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1. Let f and g be real integrable functions on a o-finite measure space

(X, M, ), and for t € R let

Ft—{re,E/f )>t} and G;= {.IE)E((] ) sy .

Show that
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2. Show that

/ > dx
- x2(sin®z)1/3
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is finite.
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3. A collection of functions { f, }aca C L*(p) on the measure space (X, M, p)
is said to be uniformly integrable if

i &0 / fal = 0.
M—=00 ac A J{z:| fo(z)|>M}

a. Prove that if f € L' then {f} is uniformly integrable.

b. Prove that if {f,}aca and {fz}ses are two collections of uniformly
integrable functions then {f,},caup is uniformly integrable.

c. Show that if u(X) < oo and {fa}aca C L' (i) is uniformly integrable
then

sup/|f|du < 00.

acA

Give an example to show that the conclusion fails without the condi-
tion p(X) < oo.

d. Again let u(X) < oo and suppose {f,}5>, C L'(u) such that
fo — foae and [|fuldp — [|foldp. Prove that {f,}52 is uniformly
integrable. Hint: Consider some ¢);, a continuous, bounded function
on [0, 00), equal to 0 on [M, 00), for which |¢|1{|t| > M} < [t|— o (|t]).
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3. A collection of functions { f, }aca C L*(p) on the measure space (X, M, y)

L)

is said to be uniformly integrable if

lim sup/ |fa] = 0.
M= aeA J{a:| fo(x)|>M}
ynifml, indeg b
b. Prove that if {f,}aca and {fs}sep are two'collections of wrifermly
itpgrable functions then {f, },caup is uniformly integrable.
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3. A collection of functions { f, }aea C L' () on the measure space (X, M, y)
is said to be uniformly integrable if

lim sup/ |fal = 0.
M=00 acA J (2! fa(z)|>M}

c. Show that if u(X) < oo and { fa }aca C L'(p) is uniformly integrable
then

sup/ |fldp < oo.

acA

Give an example to show that the conclusion fails without the condi-
tion pu(X) < oo.
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3. A collection of functions {f, }aca C L*(p) on the measure space (X, M, p)
is said to be uniformly integrable if

lim sup/ lfa] = 0
M—00 ae A J{z:| fa(z)|>M}

d. Again let u(X) < oo and suppose {fn}>>, C L'(u) such that
fn = foae and [|f,|du — [|foldp. Prove that {f,}22, is uniformly
integrable. Hint: Consider some ¢,;, a continuous, bounded function
on [0,00), equal to 0 on [M, 00), for which |t|1{|t| > M} < |t|— o ([t]).
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3. A collection of functions { f, }aca C L'(p) on the measure space (X, M, y)
is said to be uniformly integrable if

lim sup / | fa] = 0.
M—00 ae A J{z:| fa(z)|>M}

d. Again let u(X) < oo and suppose {fn}>>, C L'(u) such that
fn — fo a.e. and f | fuldp — f | foldp. Prove that {f,}52, is uniformly
integrable. Hint: Consider some ¢,;, a continuous, bounded function
on [0, 00), equal to 0 on [M, 00), for which [¢|1{|t| > M} < |t|—oa([t]).
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4.

Let M be the collection of all finite measures on the measure space

(X, M).

a. Show that

d(v,\) = 2 sup [v(E) — A(E)|
EeM

defines a metric on M.

b. For any u € M that dominates measures v and A in M with v(X) =
AMX) =1, let

B dv d d\
p= i and ¢ = d,u
Prove

) = [ 1) - a@)l du =2 (1 - [ win {p(a). ) du) |

Hint: notice that pu(E) — A(E) = A(E°) — v(E°).
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b. For any p € M that dominates measures v and A in Ml with v(X) =
AX) =1, let

dv d dA
= — an = —.

Prove

. ) = [ 1) — 4@l d =2 (1 ~ [ (i o) ) du) |

Hint: notice that pu(E) — A(E) = A(E°) — v(E°).



