

2010, Spring

Problem 1.

(i) Let f be u.s.c. and $a \in \mathbb{R}$. If $x_0 \in f^{-1}((-\infty, a)) = \{x \in \mathbb{R} \mid f(x) < a\}$, then $f(x_0) + \epsilon < a$ for some $\epsilon > 0$. Then there's some $\delta > 0$ so that $f(x) < f(x_0) + \epsilon < a$ whenever $|x - x_0| < \delta$. Thus $f^{-1}((-\infty, a))$ is open, and in particular Borel. Since sets of the form $(-\infty, a)$ for $a \in \mathbb{R}$ generate $\mathcal{B}_{\mathbb{R}}$, this shows that f is measurable. \square

(ii) We first claim that a map $f : \mathbb{R} \rightarrow \mathbb{R}$ is u.s.c. if for each $x \in \mathbb{R}$ we have $\limsup_{j \rightarrow \infty} f(x_j) \leq f(x)$ whenever $\{x_j\}_{j=1}^{\infty} \subset \mathbb{R}$ satisfies $\lim_{j \rightarrow \infty} x_j = x$. (In fact, this is an equivalent definition of upper semicontinuity.)

To establish this, suppose f is u.s.c., but there's some $x \in \mathbb{R}$ and a sequence $\{x_j\}_{j=1}^{\infty} \subset \mathbb{R}$ converging to x , with $f(x) < a := \limsup_{j \rightarrow \infty} f(x_j)$. Let $\epsilon > 0$ be such that $f(x) < a - \epsilon$. By definition of a , there's a subsequence $\{x_{j_k}\}_{k=1}^{\infty}$ of $\{x_j\}_{j=1}^{\infty}$ converging to a , so all but finitely many of the x_{j_k} 's belong to $E := \{y \in \mathbb{R} \mid f(y) \geq a - (\epsilon/2)\}$. By inspection, E is closed, so $x = \lim_{k \rightarrow \infty} x_{j_k} \in E$, and hence $a - (\epsilon/2) \leq f(x) < a - \epsilon$, which is impossible.

Now, define $f : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) := \mu(x + A)$. It's enough to show that f satisfies the above condition. Let $\{x_j\}_{j=1}^{\infty} \subset \mathbb{R}$ converge to some $x \in \mathbb{R}$. Since $|f| \leq \mu(\mathbb{R}) < \infty$ on all of \mathbb{R} , then

$$\limsup_{j \rightarrow \infty} f(x_j) = \limsup_{j \rightarrow \infty} \mu(x_j + A) \leq \mu\left(\limsup_{j \rightarrow \infty} (x_j + A)\right)$$

by reverse Fatou's lemma. By definition of \limsup , if $y \in \limsup_{j \rightarrow \infty} (x_j + A)$, then $y \in x_j + A$ for infinitely many $j \in \mathbb{N}$. Passing to a subsequence of $\{x_j\}_{j=1}^{\infty}$ if necessary, w.l.o.g. $y = x_j + a_j$, for some $a_j \in A$, for all $j \in \mathbb{N}$, and passing to another subsequence if necessary, w.l.o.g. $\lim_{j \rightarrow \infty} a_j$ exists and belongs to A since A is closed. Then $y = x + \lim_{j \rightarrow \infty} a_j \in x + A$, whereby we've shown that $\limsup_{j \rightarrow \infty} (x_j + A) \subset x + A$. So

$$\limsup_{j \rightarrow \infty} f(x_j) \leq \mu\left(\limsup_{j \rightarrow \infty} (x_j + A)\right) \leq \mu(x + A) = f(x),$$

and this completes the proof. \square

Problem 2.

(a) **True.** Let $\delta, \epsilon > 0$. Since $\mu(X) < \infty$, there's $M > 0$ large enough so that if $E := \{|f| < M\}$, then $\mu(E^c) < \epsilon/3$. Now $|f_n^2 - f^2| \leq |f_n^2 - f_n f| + |f_n f - f^2| = |f_n| \cdot |f_n - f_n| + |f| \cdot |f_n - f|$, so

$$\{|f_n^2 - f^2| > \delta\} \subset \left\{|f_n| \cdot |f_n - f| > \frac{\delta}{2}\right\} \cup \left\{|f| \cdot |f_n - f| > \frac{\delta}{2}\right\}.$$

Thus $\mu(E \cap \{|f_n^2 - f^2| > \delta\})$ is bounded above by

$$\mu\left(E \cap \left\{|f_n| \cdot |f_n - f| > \frac{\delta}{2}\right\}\right) + \mu\left(E \cap \left\{|f| \cdot |f_n - f| > \frac{\delta}{2}\right\}\right) + \underbrace{\mu(E^c)}_{< \epsilon/3}.$$

For large enough n the second term gives

$$\mu\left(E \cap \left\{|f| \cdot |f_n - f| > \frac{\delta}{2}\right\}\right) < \mu\left(\left\{M|f_n - f| > \frac{\delta}{2}\right\}\right) < \frac{\epsilon}{3}.$$

Moreover $|f_n| \cdot |f_n - f| \leq (|f| + |f - f_n|) |f - f_n| = |f| \cdot |f_n - f| + |f_n - f|^2$ and so for large enough n the first term gives

$$\begin{aligned} \mu \left(E \cap \left\{ |f_n| \cdot |f_n - f| > \frac{\delta}{2} \right\} \right) &\leq \mu \left(E \cap \left\{ |f| \cdot |f \cdot f_n| > \frac{\delta}{4} \right\} \right) + \mu \left(\left\{ |f_n - f|^2 > \frac{\delta}{4} \right\} \right) \\ &\leq \mu \left(\left\{ M|f - f_n| > \frac{\delta}{4} \right\} \right) + \mu \left(\left\{ |f_n - f| > \frac{\delta^{1/2}}{2} \right\} \right) < \frac{\epsilon}{6} + \frac{\epsilon}{6} = \frac{\epsilon}{3}. \end{aligned}$$

Hence $\mu(E \cap \{|f_n^2 - f^2| > \delta\}) < \epsilon$. \square

(b) **False.** Set $X := (0, \infty)$ with Lebesgue measure μ . If $f_n(x) := x - n^{-1}$ and $f(x) := x$, then for any $\delta > 0$, we have $\mu(\{|f_n(x) - f(x)| > \delta\}) = \mu(\{n^{-1} > \delta\}) \rightarrow 0$ and hence $f_n \rightarrow f$ in measure. However for any $n \in \mathbb{N}$ and any x in the measure- ∞ set $[n, \infty)$,

$$|f_n^2(x) - f^2(x)| = \left| \left(x^2 - \frac{2x}{n} + \frac{1}{n^2} \right) - x^2 \right| = \frac{2x}{n} - \frac{1}{n}^2 \geq 2,$$

whereby $f_n^2 \not\rightarrow f^2$ in measure. \square

Problem 3.

Let $E \subset [0, 1]$ have $m(E) = 0$, and let $\epsilon > 0$. Since f is absolutely continuous, there's some $\delta > 0$ such that for any disjoint collection $\{(a_j, b_j)\}_{j=1}^N$, we have

$$\sum_{j=1}^N (b_j - a_j) < \delta \implies \sum_{j=1}^N [f(b_j) - f(a_j)] < \epsilon.$$

By outer regularity of m , there's an open set $U \subset [0, 1]$ with $E \subset U$ and $m(U) < \delta$. We may write U as a disjoint union $U = \bigsqcup_{j \in J} (a_j, b_j)$ for some countable set J . Then for any $N \leq |J|$,

$$\sum_{j=1}^N (b_j - a_j) \leq \sum_{j \in J} (b_j - a_j) = m(U) < \delta \implies \sum_{j=1}^N [f(b_j) - f(a_j)] < \epsilon,$$

and hence it follows that

$$m(f(E)) = m\left(\bigcup_{j \in J} (f(a_j), f(b_j))\right) = \sum_{j \in J} [f(b_j) - f(a_j)] \leq \epsilon,$$

where the first inequality used that f was strictly increasing. Hence $m(f(E)) = 0$. \square

Problem 4.

- Let $f \in L^1([0, 1])$ and choose any $\epsilon > 0$. We may find a simple function $\varphi = \sum_{k=1}^m a_k \mathbb{1}_{E_k}$ with $\|f - \varphi\|_{L^1([0, 1])} < \epsilon$, where $\{a_k\}_{k=1}^m \subset \mathbb{R}$ and $\{E_k\}_{k=1}^m \subset \mathcal{B}_{[0, 1]}$ is a disjoint collection of sets. By discarding countably many singletons if necessary, w.l.o.g. E_k is a disjoint union of intervals for each $1 \leq k \leq m$. We further assume w.l.o.g. that E_k is a single interval for each $1 \leq k \leq m$. For each $n \in \mathbb{N}$,

$$\left| \int h_n f - \int h_n \varphi \right| \leq \left| \int h_n (f - \varphi) \right| \leq \int \underbrace{|h_n|}_{=1} |f - \varphi| < \epsilon,$$

so if the result holds for simple functions which are linear combinations of indicators of intervals, then taking the limit as $n \rightarrow \infty$ on each side gives $\lim_{n \rightarrow \infty} |\int h_n f| < \epsilon$. Thus we've reduced to the case of simple functions of this form.

- Now suppose $\varphi = \sum_{k=1}^m a_k \mathbb{1}_{E_k}$ is a linear combination of indicators of intervals $E_k \in \mathcal{B}_{[0,1]}$, $1 \leq k \leq m$. If the result holds for indicators of intervals, then

$$\lim_{n \rightarrow \infty} \int h_n \varphi = \sum_{k=1}^m a_k \underbrace{\lim_{n \rightarrow \infty} \int h_n \mathbb{1}_{E_k}}_{=0} = 0,$$

so we've further reduced to the case of indicators of intervals.

- Finally, let $E \in \mathcal{B}_{[0,1]}$ be an arbitrary interval, fix $n \in \mathbb{N}$, and let $F_{j_1}, \dots, F_{j_\ell}$ be those intervals $F_j := (\frac{j-1}{n}, \frac{j}{n}]$ with $F_j \subset E$ (w.l.o.g. $j_1 < \dots < j_\ell$). Setting $G_0 := F_{j_1-1}$ and $G_1 := F_{j_\ell+1}$, then $E \subset G_0 \cup F_{j_1} \cup \dots \cup F_{j_\ell} \cup G_1$, so

$$\left| \int_{[0,1]} h_n \mathbb{1}_E \right| = \left| \int_E h_n \right| \leq \underbrace{\int_{G_0} 1}_{=1/n} + \left| \sum_{r=1}^{\ell} \int_{F_{j_r}} h_n \right| + \underbrace{\int_{G_1} 1}_{=1/n} = \frac{2}{n} + \left| \sum_{r=1}^{\ell} \frac{(-1)^{j_r}}{n} \right|.$$

The summands on the right alternate signs as r increases, so the entire sum is either 0 or $\pm 1/n$ depending on the parity of ℓ . Whichever is the case,

$$\lim_{n \rightarrow \infty} \left| \int_{[0,1]} h_n \mathbb{1}_E \right| \leq \lim_{n \rightarrow \infty} \left(\frac{2}{n} + \frac{1}{n} \right) = 0.$$

This completes the proof. □