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Problem 1.

(i) Let f be us.c. and a € R. If g € f~}((—o0,a)) = {z € R| f(z) < a}, then f(zo) +e<a
for some € > 0. Then there’s some ¢ > 0 so that f(x) < f(xo) +€ < a whenever |z — zo| < 4.
Thus f~((—o0, a)) is open, and in particular Borel. Since sets of the form (—oo,a) for a € R
generate B, this shows that f is measurable. O

(ii) We first claim that a map f: R — R is us.c. if for each x € R we have limsup;_, . f(z;) <
f(z) whenever {z;}32; C R satisfies lim;_,o ; = z. (In fact, this is an equivalent definition
of upper semicontinuity.)

To establish this, suppose f is w.s.c., but there’s some z € R and a sequence {z;}52; C R
converging to z, with f(x) < a:=limsup,_, . f(z;). Let € > 0 be such that f(r) <a—e. By
definition of a, there’s a subsequence {x;, }3; of {z;}32, converging to a, so all but finitely
many of the z;,’s belong to E := {y € R | f(y) > a — (¢/2)}. By inspection, E is closed, so
x = limg00 25, € E, and hence a — (¢/2) < f(z) < a — ¢, which is impossible.

Now, define f : R — R by f(z) := p(z + A). It’s enough to show that f satisfies the above
condition. Let {z;}32; C R converge to some z € R. Since |f| < u(R) < oo on all of R, then

limsup f(z;) = limsup u(z; + A) < u(lim sup(z; + A))
j—o0 j—oo Jj—o0

by reverse Fatou’s lemma. By definition of limsup, if y € limsup,;_,  (z; + A), then y €
xj + A for infinitely many j € N. Passing to a subsequence of {z; }j‘;l if necessary, w.l.o.g.
y = x; + aj, for some a; € A, for all j € N, and passing to another subsequence if necessary,
w.l.o.g. lim;_ o a; exists and belongs to A since A is closed. Then y = z+lim;_ a; € x+ A,
whereby we've shown that limsup;_, . (z; + A) C 2+ A. So

limsup f(z;) < ﬂ(lim sup(z; + A)) <uplz+ A) = f(z),

Jj—ro0 j—o0
and this completes the proof. O

Problem 2.

(a) True. Let d,e > 0. Since p(X) < oo, there’s M > 0 large enough so that if £ := {|f| < M},
then u(E°) < ¢/3. Now [fa — f2| < |f3 = fuf |+ |fuf = 2] = [fal - |fo = Ful + 1 f] - | fu = £,

SO
(Is2- 221> 8y {1 - 11> g o {1 - 1> 3.

Thus p (EO {|f3 - f2’ > 5}) is bounded above by

w(Eo{int s == 5} +u(En{inin - 0> 5} + ue.

<e/3

For large enough n the second term gives

w(Eo{iin-n>3}) <u({ann-n>3}) <
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Morcover |fu| - |fu = fI < (If[+|f = fal) If = ful = [£] - [fa = f + |fa — £I* and so for large

enough n the first term gives

w(o{intin-n>3}) <u(Ba{itirai>3}) +u({n- 2> 3})
<u({anr=ni= ) en(fir-n> 20 ) <cr b=t

Henceu(Eﬂ{‘fﬁ—f2|>§})<e. (]

(b) False. Set X := (0,00) with Lebesgue measure pu. If f,(z) := 2 —n~! and f(z) := z, then
for any 6 > 0, we have u({|fn(z) — f(z)| > §}) = u({n~! > 6}) — 0 and hence f,, — f in
measure. However for any n € N and any z in the measure-co set [n, 00),

£2(@) - f2(a)] = |(x =, 1) L

whereby f2 /4 f? in measure. O

Problem 3.
Let E C [0,1] have m(E) = 0, and let ¢ > 0. Since f is absolutely continuous, there’s some § > 0

such that for any disjoint collection {(a;, bj)}é»v:l, we have
N N
> b —a;) <6 = D [fb;) — flag)] <e.
j=1 j=1

By outer regularity of m, there’s an open set U C [0, 1] with E C U and m(U) < §. We may write
U as a disjoint union U = | |._ ;(a;, b;) for some countable set J. Then for any N < |J|,

> —a;) <Y (b —a;) =mU) <5 = > [f(b;) — flaj)] <,
Jj=1 jeJ j=1

and hence it follows that
m(£(E) = m( |J(F(a). £1;))) = Y_1F0:) = fla)] < e,
jeJs jeJ
where the first inequality used that f was strictly increasing. Hence m(f(E)) = 0. O
Problem 4.

o Let f € L'([0,1]) and choose any € > 0. We may find a simple function ¢ = > ;- axlp,
with || f = @lli1 o1y <€ where {ax};L; C R and {Ex};L; C B, is a disjoint collection of
sets. By discarding countably many singletons if necessary, w.l.o.g. Ej is a disjoint union of
intervals for each 1 < k < m. We further assume w.l.o.g. that E}, is a single interval for each
1 <k <m. For each n € N,

‘/hnf ’/hnw‘ﬁ'/hn(f¢)‘§/@f@l<e,

so if the result holds for simple functions which are linear combinations of indicators of
intervals, then taking the limit as n — oo on each side gives Iimn_)oo|f hnf’ < €. Thus we’ve
reduced to the case of simple functions of this form.

15



USC Qualifying Exams — Real analysis Alec Sahakian

« Now suppose ¢ = > ;" ; axlp, is a linear combination of indicators of intervals Ej, € By 1],
1 < k < m. If the result holds for indicators of intervals, then

m
i, [hup =3 e fim, [z, =0
=0
so we've further reduced to the case of indicators of intervals.
e Finally, let £ € B,y be an arbitrary interval, fix n € N, and let Fj,,..., F;, be those

~[0.1]
intervals F; = (2%, 1] with F; C E (wlo.g. ji1 < -+ < jo). Setting Go := Fj,_1 and

n ?

Gi = Fj[{+1, then F C Gy UFjl U“'UF‘jZ UGy, so

14

2 | & (1)
[0,1] E Go  |1=1/F;, G o=
N—— ——
=1/n =1/n

The summands on the right alternate signs as r increases, so the entire sum is either 0 or
+1/n depending on the parity of £. Whichever is the case,

2 1
/ holg| < lim (+> =0.
[0,1] nTee A n

This completes the proof. O

lim
n—oo
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