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Problem 1.

(i) Let f be u.s.c. and a ∈ R. If x0 ∈ f−1((−∞, a)) = {x ∈ R | f(x) < a}, then f(x0) + ε < a
for some ε > 0. Then there’s some δ > 0 so that f(x) < f(x0) + ε < a whenever |x− x0| < δ.
Thus f−1((−∞, a)) is open, and in particular Borel. Since sets of the form (−∞, a) for a ∈ R
generate BR, this shows that f is measurable. �

(ii) We first claim that a map f : R→ R is u.s.c. if for each x ∈ R we have lim supj→∞ f(xj) ≤
f(x) whenever {xj}∞j=1 ⊂ R satisfies limj→∞ xj = x. (In fact, this is an equivalent definition
of upper semicontinuity.)

To establish this, suppose f is u.s.c., but there’s some x ∈ R and a sequence {xj}∞j=1 ⊂ R
converging to x, with f(x) < a := lim supj→∞ f(xj). Let ε > 0 be such that f(x) < a− ε. By
definition of a, there’s a subsequence {xjk}∞k=1 of {xj}∞j=1 converging to a, so all but finitely
many of the xjk ’s belong to E := {y ∈ R | f(y) ≥ a− (ε/2)}. By inspection, E is closed, so
x = limk→∞ xjk ∈ E, and hence a− (ε/2) ≤ f(x) < a− ε, which is impossible.

Now, define f : R → R by f(x) := µ(x + A). It’s enough to show that f satisfies the above
condition. Let {xj}∞j=1 ⊂ R converge to some x ∈ R. Since |f | ≤ µ(R) <∞ on all of R, then

lim sup
j→∞

f(xj) = lim sup
j→∞

µ(xj +A) ≤ µ
(
lim sup
j→∞

(xj +A)
)

by reverse Fatou’s lemma. By definition of lim sup, if y ∈ lim supj→∞(xj + A), then y ∈
xj + A for infinitely many j ∈ N. Passing to a subsequence of {xj}∞j=1 if necessary, w.l.o.g.
y = xj + aj , for some aj ∈ A, for all j ∈ N, and passing to another subsequence if necessary,
w.l.o.g. limj→∞ aj exists and belongs to A since A is closed. Then y = x+ limj→∞ aj ∈ x+A,
whereby we’ve shown that lim supj→∞(xj +A) ⊂ x+A. So

lim sup
j→∞

f(xj) ≤ µ
(
lim sup
j→∞

(xj +A)
)
≤ µ(x+A) = f(x),

and this completes the proof. �

Problem 2.

(a) True. Let δ, ε > 0. Since µ(X) <∞, there’s M > 0 large enough so that if E := {|f | < M},
then µ(Ec) < ε/3. Now

∣∣f2n − f2∣∣ ≤ ∣∣f2n − fnf ∣∣ +
∣∣fnf − f2∣∣ = |fn| · |fn − fn| + |f | · |fn − f |,

so {∣∣f2n − f2∣∣ > δ
}
⊂
{
|fn| · |fn − f | >

δ

2

}
∪
{
|f | · |fn − f | >

δ

2

}
.

Thus µ
(
E ∩

{∣∣f2n − f2∣∣ > δ
})

is bounded above by

µ

(
E ∩

{
|fn| · |fn − f | >

δ

2

})
+ µ

(
E ∩

{
|f | · |fn − f | >

δ

2

})
+ µ(Ec)︸ ︷︷ ︸

<ε/3

.

For large enough n the second term gives

µ

(
E ∩

{
|f | · |fn − f | >

δ

2

})
< µ

({
M |fn − f | >

δ

2

})
<
ε

3
.
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Moreover |fn| · |fn − f | ≤ (|f |+ |f − fn|) |f − fn| = |f | · |fn − f | + |fn − f |2 and so for large
enough n the first term gives

µ

(
E ∩

{
|fn| · |fn − f | >

δ

2

})
≤ µ

(
E ∩

{
|f | · |f · fn| >

δ

4

})
+ µ

({
|fn − f |2 >

δ

4

})
≤ µ

({
M |f − fn| >

δ

4

})
+ µ

({
|fn − f | >

δ1/2

2

})
<
ε

6
+
ε

6
=
ε

3
.

Hence µ
(
E ∩

{∣∣f2n − f2∣∣ > δ
})

< ε. �

(b) False. Set X := (0,∞) with Lebesgue measure µ. If fn(x) := x − n−1 and f(x) := x, then
for any δ > 0, we have µ({|fn(x)− f(x)| > δ}) = µ({n−1 > δ}) → 0 and hence fn → f in
measure. However for any n ∈ N and any x in the measure-∞ set [n,∞),∣∣f2n(x)− f2(x)

∣∣ =

∣∣∣∣(x2 − 2x

n
+

1

n2

)
− x2

∣∣∣∣ =
2x

n
− 1

n

2

≥ 2,

whereby f2n 6→ f2 in measure. �

Problem 3.

Let E ⊂ [0, 1] have m(E) = 0, and let ε > 0. Since f is absolutely continuous, there’s some δ > 0
such that for any disjoint collection {(aj , bj)}Nj=1, we have

N∑
j=1

(bj − aj) < δ =⇒
N∑
j=1

[f(bj)− f(aj)] < ε.

By outer regularity of m, there’s an open set U ⊂ [0, 1] with E ⊂ U and m(U) < δ. We may write
U as a disjoint union U =

⊔
j∈J(aj , bj) for some countable set J . Then for any N ≤ |J |,

N∑
j=1

(bj − aj) ≤
∑
j∈J

(bj − aj) = m(U) < δ =⇒
N∑
j=1

[f(bj)− f(aj)] < ε,

and hence it follows that

m(f(E)) = m
( ⋃
j∈J

(f(aj), f(bj))
)

=
∑
j∈J

[f(bj)− f(aj)] ≤ ε,

where the first inequality used that f was strictly increasing. Hence m(f(E)) = 0. �

Problem 4.

• Let f ∈ L1([0, 1]) and choose any ε > 0. We may find a simple function ϕ =
∑m
k=1 ak1Ek

with ‖f − ϕ‖L1([0,1]) < ε, where {ak}mk=1 ⊂ R and {Ek}mk=1 ⊂ B[0,1] is a disjoint collection of
sets. By discarding countably many singletons if necessary, w.l.o.g. Ek is a disjoint union of
intervals for each 1 ≤ k ≤ m. We further assume w.l.o.g. that Ek is a single interval for each
1 ≤ k ≤ m. For each n ∈ N,∣∣∣∣∣∣∣∣∫ hnf

∣∣∣∣− ∣∣∣∣∫ hnϕ

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∫ hn(f − ϕ)

∣∣∣∣ ≤ ∫ |hn|︸︷︷︸
=1

|f − ϕ| < ε,

so if the result holds for simple functions which are linear combinations of indicators of
intervals, then taking the limit as n→∞ on each side gives limn→∞

∣∣∫ hnf ∣∣ < ε. Thus we’ve
reduced to the case of simple functions of this form.
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• Now suppose ϕ =
∑m
k=1 ak1Ek

is a linear combination of indicators of intervals Ek ∈ B[0,1],
1 ≤ k ≤ m. If the result holds for indicators of intervals, then

lim
n→∞

∫
hnϕ =

m∑
k=1

ak lim
n→∞

∫
hn1Ek︸ ︷︷ ︸

=0

= 0,

so we’ve further reduced to the case of indicators of intervals.

• Finally, let E ∈ B[0,1] be an arbitrary interval, fix n ∈ N, and let Fj1 , . . . , Fj` be those

intervals Fj := ( j−1n , jn ] with Fj ⊂ E (w.l.o.g. j1 < · · · < j`). Setting G0 := Fj1−1 and
G1 := Fj`+1, then E ⊂ G0 ∪ Fj1 ∪ · · · ∪ Fj` ∪G1, so∣∣∣∣∣

∫
[0,1]

hn1E

∣∣∣∣∣ =

∣∣∣∣∫
E

hn

∣∣∣∣ ≤ ∫
G0

1︸ ︷︷ ︸
=1/n

+

∣∣∣∣∣∑̀
r=1

∫
Fjr

hn

∣∣∣∣∣+

∫
G1

1︸ ︷︷ ︸
=1/n

=
2

n
+

∣∣∣∣∣∑̀
r=1

(−1)jr

n

∣∣∣∣∣.
The summands on the right alternate signs as r increases, so the entire sum is either 0 or
±1/n depending on the parity of `. Whichever is the case,

lim
n→∞

∣∣∣∣∣
∫
[0,1]

hn1E

∣∣∣∣∣ ≤ lim
n→∞

(
2

n
+

1

n

)
= 0.

This completes the proof. �
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