

2009, Spring

Incomplete: 3, 4.**Problem 1.**

(a) We consider the cases of finite and infinite countable unions separately.

- Suppose $\{E_j\}_{j=1}^m \subset \mathcal{C}$ and let $\epsilon > 0$. For each $1 \leq j \leq m$, there's a set $A_j \in \mathcal{A}$ such that $A_j \subset E_j$ and $\mu(E_j \setminus A_j) < \epsilon/m$. Note that $A := \bigcup_{j=1}^m A_j \in \mathcal{A}$ since \mathcal{A} is an algebra, and we have $A \subset E := \bigcup_{j=1}^m E_j$. Then

$$\mu(E \setminus A) = \mu\left(\bigcup_{j=1}^m (E_j \setminus A_j)\right) \leq \mu\left(\bigcup_{j=1}^m (E_j \setminus A_j)\right) \leq \sum_{j=1}^m \mu(E_j \setminus A_j) < \sum_{j=1}^m \frac{\epsilon}{m} = \epsilon,$$

so $E \in \mathcal{C}$.

- Now suppose $\{E_j\}_{j=1}^\infty \subset \mathcal{C}$ and let $\epsilon > 0$. Letting $F_m := \bigcup_{j=1}^m E_j$ for each $m \in \mathbb{N}$, we have an increasing sequence $F_1 \subset F_2 \subset \dots$ with $F_m \nearrow E := \bigcup_{j=1}^\infty E_j$ as $m \rightarrow \infty$, so by continuity from below, $\mu(F_m) \rightarrow \mu(E)$ as $m \rightarrow \infty$. Because $\mu(E) \leq \mu(X) < \infty$, we can choose $m \in \mathbb{N}$ large enough so that $\mu(E) - \mu(F_m) < \epsilon/2$, whereby

$$\mu(E) = \mu(E \setminus F_m) + \mu(F_m) \implies \mu(E \setminus F_m) = \mu(E) - \mu(F_m) < \epsilon/2,$$

the first equality holding since $F_m \subset E$. Moreover, $F_m \in \mathcal{C}$ by the above argument, so we can find some $A \in \mathcal{A}$ with $A \subset F_m \subset E$ and $\mu(F_m \setminus A) < \epsilon/2$. Then

$$\mu(E) = \mu(E \setminus F_m) + \mu(F_m) \implies \mu(E \setminus A) \leq \mu(E \setminus F_m) + \mu(F_m \setminus A) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

and thus $E \in \mathcal{C}$.

□

(b) Let $X := [0, 1]$ with σ -algebra $\mathcal{B}_{[0,1]}$ and Lebesgue measure μ . Let $\mathcal{A} \subset \mathcal{B}_{[0,1]}$ be the algebra generated by all singletons $\{q\}$, $q \in E := \mathbb{Q} \cap [0, 1]$, using complements and finite unions. Then $A \in \mathcal{A}$ if and only if A is a finite collection $\{q_j\}_{j=1}^m \subset E$ or A is the complement of such a set. Note that $\{0\} \in \mathcal{A}$, $\{0\} \subset E$, and $\mu(E \setminus \{0\}) \leq \mu(E) = 0 < \epsilon$ for any $\epsilon > 0$, so E is approximable from inside by \mathcal{A} . But observe that any element $A \in \mathcal{A}$ contains at least one rational, while E contains only irrationals, so we can't have $A \subset E^c$, and thus E^c isn't approximable from inside by \mathcal{A} .

Problem 2.

(a) Both f, g are continuous on the compact set $[a, b]$, so there's some $M > 0$ large enough so that $|f|, |g| \leq M$ on all of $[a, b]$. Now let $\epsilon > 0$ and choose $\delta > 0$ such that for any disjoint collection $\{(a_j, b_j) \subset [a, b]\}_{j=1}^N$, we have

$$\sum_{j=1}^N (b_j - a_j) < \delta \implies \sum_{j=1}^N |f(b_j) - f(a_j)|, \sum_{j=1}^N |g(b_j) - g(a_j)| < \frac{\epsilon}{2M}.$$

Then for any such collection,

$$\begin{aligned} \sum_{j=1}^N |f(b_j)g(b_j) - f(a_j)g(a_j)| &\leq \sum_{j=1}^N [|f(b_j)g(b_j) - f(b_j)g(a_j)| + |f(b_j)g(a_j) - f(a_j)g(a_j)|] \\ &\leq M \left(\underbrace{\sum_{j=1}^N |g(b_j) - g(a_j)|}_{<\epsilon/2M} + \underbrace{\sum_{j=1}^N |f(b_j) - f(a_j)|}_{<\epsilon/2M} \right) < M \left(\frac{\epsilon}{2M} + \frac{\epsilon}{2M} \right) = \epsilon. \end{aligned}$$

□

(b) We've just seen that fg is absolutely continuous, so we have

$$f(b)g(b) - f(a)g(a) = \int_a^b (fg)' = \int_a^b (f'g + fg') = \int_a^b f'g + \int_a^b fg'$$

by the fundamental theorem for Lebesgue integrals. □

(c) Take some $[a, b] \subset \mathbb{R}$ with $b - a \neq 2$, and let $f, g : [a, b] \rightarrow \mathbb{R}$ be given by $f(x) := (x - a)/(b - a)$ and $g(x) := \frac{1}{2}\mathbb{1}_{[\frac{b-a}{2}, b]}(x)$. Then $f' = 1$ and $g' = 0$ a.e. on $[a, b]$, but g isn't continuous (in particular, g isn't absolutely continuous). We have

$$\int_a^b \underbrace{f'}_{=1} g + \int_a^b f \underbrace{g'}_{=0} = \int_a^b g = \frac{b-a}{4} \neq \frac{1}{2} = \underbrace{f(b)g(b)}_{=1} - \underbrace{f(a)g(a)}_{=0}.$$

□