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Problem 1.

Firstly, 1() = limp o0 pin() = limp00 0 = 0. Now let {E;}jc; C M be a disjoint collection indexed
by a countable set J C N, and for each n € N, let f,, : N — R be given by f,(j) := un(E;). By
assumption, f; < fo <---, and f, 7 f for f(j) := u(E;). If v is the counting measure on N, then

u( U Ej) = nImepn( U Ej) = nImeZun(EJ = I|m /fndz/ = / fdv = Z,u

jeJ jed jeJ jed
by monotone convergence. ([l

Problem 2.

a) Let 0 < a < pu(X), and assume the inf in question is 0. Then we can find a sequence
1
{E;}32, € Msuch that u(E;) > ccand [y flg, = ij f < j~'. Then the sequence {flg,}32,
converges to 0 in measure, so there’s some subsequence {f1 By, }2° | converging to 0 a.e. In
this case, '

0=p (IimsupEjk) = ,u( m U Ejk)
£=1k=¢

k—o0

so for any € > 0 there must be some ¢ € N satisfying the last inequality below,

a < p(Ej,) < #( U Ejk) <e
k=t

Choosing € < « gives a contradiction. a

(b) Let X := (1,00) with Lebesgue measure p. The function f(z) := z~2 is strictly positive on
(1,00) and f(l oy f =150 f € LY(n). However for a := 1, the intervals (j,j + 1) for j € N
satisfy u((4,7 4+ 1)) =1, and for any € > 0, we can choose j large enough so that

It de 1
/ f= / Pl e
(j+1) A R e ol

Thus the inf in question must be 0. ]

Problem 3.

Denote by i the Lebesgue measure on R?, and let € > 0. Since [0, 1] is compact, f is uniformly
continuous, so there’s some 0 < § < 1 so that |f(x) — f(y)| < €/4 whenever |z —y| < §. Let
0=z <21 < < Tm—1 < Ty, = 1 be a partition with |z; — ;11| < 0 for each 0 < j <m —1
and with m € N the smallest integer satisfying mdé > 1. Then (m—1)d < landsoméd < 1+4 < 2.
Our choice of § yields

m—1

e € €
graph(f U Tj, Tjt] f(wj)—z,f(xj)ﬂL*} = p(graph(f)) < > 4-

1 —m6-§<6.
7=0

2
=

Therefore p(graph(f)) = 0. O
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Problem 4 (7).

Fix u € (0,1). Provided we may exchange the order of differentiation and integration, then

[ee] d el [e'e} anrleuz
"(u) = — | —— | dx = ——dz.
9w /oodu<e$+1) “ /,OO er +1 v
This exchange is valid if the integrand on the right-hand side is bounded (in magnitude) a.e. by
an integrable function. To see this, let € > 0 be such that u € (0,1 — €). Then for > 0, we have

1< e® — Ut — (ez)u < (6I)176 _ 6(175)1

and for z < 0 we have e* < 1. So for any z € R, we have e** < 1 + e(179% hereby

xn—i—leum $n+l(1 + 6(1—5)1) JZ"+1 l‘n+1€(1_5)$ xn+l xn—‘—l
< < .
et +1 |~ er +1 “ler+1 ertl ~ler+1 eltex
Both summands on the right are integrable, so this completes the proof. O
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