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Problem 1.

Firstly, µ() = limn→∞ µn() = limn→∞ 0 = 0. Now let {Ej}j∈J ⊂M be a disjoint collection indexed
by a countable set J ⊂ N, and for each n ∈ N, let fn : N → R be given by fn(j) := µn(Ej). By
assumption, f1 ≤ f2 ≤ · · · , and fn ↗ f for f(j) := µ(Ej). If ν is the counting measure on N, then

µ
( ⋃
j∈J

Ej

)
= lim
n→∞

µn

( ⋃
j∈J

Ej

)
= lim
n→∞

∑
j∈J

µn(Ej) = lim
n→∞

∫
N
fndν =

∫
N
fdν =

∑
j∈J

µ(Ej)

by monotone convergence. �

Problem 2.

(a) Let 0 < α < µ(X), and assume the inf in question is 0. Then we can find a sequence
{Ej}∞j=1 ⊂M such that µ(Ej) ≥ α and

∫
X
f1Ej

=
∫
Ej
f < j−1. Then the sequence {f1Ej

}∞j=1

converges to 0 in measure, so there’s some subsequence {f1Ejk
}∞k=1 converging to 0 a.e. In

this case,

0 = µ

(
lim sup
k→∞

Ejk

)
= µ

( ∞⋂
`=1

∞⋃
k=`

Ejk

)
so for any ε > 0 there must be some ` ∈ N satisfying the last inequality below,

α ≤ µ(Ej`) ≤ µ
( ∞⋃
k=`

Ejk

)
< ε.

Choosing ε < α gives a contradiction. �

(b) Let X := (1,∞) with Lebesgue measure µ. The function f(x) := x−2 is strictly positive on
(1,∞) and

∫
(1,∞)

f = 1, so f ∈ L1(µ). However for α := 1, the intervals (j, j + 1) for j ∈ N
satisfy µ((j, j + 1)) = 1, and for any ε > 0, we can choose j large enough so that∫

(j,j+1)

f =

∫ j+1

j

dx

x2
=

1

j2 + j
< ε.

Thus the inf in question must be 0. �

Problem 3.

Denote by µ the Lebesgue measure on R2, and let ε > 0. Since [0, 1] is compact, f is uniformly
continuous, so there’s some 0 < δ < 1 so that |f(x)− f(y)| < ε/4 whenever |x− y| < δ. Let
0 = x0 < x1 < · · · < xm−1 < xm = 1 be a partition with |xj − xj+1| < δ for each 0 ≤ j ≤ m − 1
and with m ∈ N the smallest integer satisfying mδ > 1. Then (m−1)δ ≤ 1 and so mδ ≤ 1 + δ < 2.
Our choice of δ yields

graph(f) ⊂
m−1⋃
j=0

[xj , xj+1]×
[
f(xj)−

ε

4
, f(xj) +

ε

4

]
=⇒ µ(graph(f)) ≤

m−1∑
j=0

δ · 2ε

4
= mδ · ε

2
< ε.

Therefore µ(graph(f)) = 0. �
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Problem 4 (?).

Fix u ∈ (0, 1). Provided we may exchange the order of differentiation and integration, then

g′(u) =

∫ ∞
−∞

d

du

(
xneux

ex + 1

)
dx =

∫ ∞
−∞

xn+1eux

ex + 1
dx.

This exchange is valid if the integrand on the right-hand side is bounded (in magnitude) a.e. by
an integrable function. To see this, let ε > 0 be such that u ∈ (0, 1− ε). Then for x > 0, we have

1 < ex =⇒ eux = (ex)u < (ex)1−ε = e(1−ε)x

and for x < 0 we have ex < 1. So for any x ∈ R, we have eux < 1 + e(1−ε)x, whereby∣∣∣∣xn+1eux

ex + 1

∣∣∣∣ ≤ ∣∣∣∣xn+1(1 + e(1−ε)x)

ex + 1

∣∣∣∣ ≤ ∣∣∣∣ xn+1

ex + 1

∣∣∣∣+

∣∣∣∣xn+1e(1−ε)x

ex+1

∣∣∣∣ ≤ ∣∣∣∣ xn+1

ex + 1

∣∣∣∣+

∣∣∣∣ xn+1

e1+εx

∣∣∣∣.
Both summands on the right are integrable, so this completes the proof. �
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