

2007, Spring

Problem 1.

Firstly, $\mu(\cdot) = \lim_{n \rightarrow \infty} \mu_n(\cdot) = \lim_{n \rightarrow \infty} 0 = 0$. Now let $\{E_j\}_{j \in J} \subset \mathcal{M}$ be a disjoint collection indexed by a countable set $J \subset \mathbb{N}$, and for each $n \in \mathbb{N}$, let $f_n : \mathbb{N} \rightarrow \mathbb{R}$ be given by $f_n(j) := \mu_n(E_j)$. By assumption, $f_1 \leq f_2 \leq \dots$, and $f_n \nearrow f$ for $f(j) := \mu(E_j)$. If ν is the counting measure on \mathbb{N} , then

$$\mu\left(\bigcup_{j \in J} E_j\right) = \lim_{n \rightarrow \infty} \mu_n\left(\bigcup_{j \in J} E_j\right) = \lim_{n \rightarrow \infty} \sum_{j \in J} \mu_n(E_j) = \lim_{n \rightarrow \infty} \int_{\mathbb{N}} f_n d\nu = \int_{\mathbb{N}} f d\nu = \sum_{j \in J} \mu(E_j)$$

by monotone convergence. \square

Problem 2.

(a) Let $0 < \alpha < \mu(X)$, and assume the \inf in question is 0. Then we can find a sequence $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ such that $\mu(E_j) \geq \alpha$ and $\int_X f \mathbf{1}_{E_j} = \int_{E_j} f < j^{-1}$. Then the sequence $\{f \mathbf{1}_{E_j}\}_{j=1}^{\infty}$ converges to 0 in measure, so there's some subsequence $\{f \mathbf{1}_{E_{j_k}}\}_{k=1}^{\infty}$ converging to 0 a.e. In this case,

$$0 = \mu\left(\limsup_{k \rightarrow \infty} E_{j_k}\right) = \mu\left(\bigcap_{\ell=1}^{\infty} \bigcup_{k=\ell}^{\infty} E_{j_k}\right)$$

so for any $\epsilon > 0$ there must be some $\ell \in \mathbb{N}$ satisfying the last inequality below,

$$\alpha \leq \mu(E_{j_\ell}) \leq \mu\left(\bigcup_{k=\ell}^{\infty} E_{j_k}\right) < \epsilon.$$

Choosing $\epsilon < \alpha$ gives a contradiction. \square

(b) Let $X := (1, \infty)$ with Lebesgue measure μ . The function $f(x) := x^{-2}$ is strictly positive on $(1, \infty)$ and $\int_{(1, \infty)} f = 1$, so $f \in L^1(\mu)$. However for $\alpha := 1$, the intervals $(j, j+1)$ for $j \in \mathbb{N}$ satisfy $\mu((j, j+1)) = 1$, and for any $\epsilon > 0$, we can choose j large enough so that

$$\int_{(j, j+1)} f = \int_j^{j+1} \frac{dx}{x^2} = \frac{1}{j^2 + j} < \epsilon.$$

Thus the \inf in question must be 0. \square

Problem 3.

Denote by μ the Lebesgue measure on \mathbb{R}^2 , and let $\epsilon > 0$. Since $[0, 1]$ is compact, f is uniformly continuous, so there's some $0 < \delta < 1$ so that $|f(x) - f(y)| < \epsilon/4$ whenever $|x - y| < \delta$. Let $0 = x_0 < x_1 < \dots < x_{m-1} < x_m = 1$ be a partition with $|x_j - x_{j+1}| < \delta$ for each $0 \leq j \leq m-1$ and with $m \in \mathbb{N}$ the smallest integer satisfying $m\delta > 1$. Then $(m-1)\delta \leq 1$ and so $m\delta \leq 1 + \delta < 2$. Our choice of δ yields

$$\text{graph}(f) \subset \bigcup_{j=0}^{m-1} [x_j, x_{j+1}] \times \left[f(x_j) - \frac{\epsilon}{4}, f(x_j) + \frac{\epsilon}{4}\right] \implies \mu(\text{graph}(f)) \leq \sum_{j=0}^{m-1} \delta \cdot \frac{2\epsilon}{4} = m\delta \cdot \frac{\epsilon}{2} < \epsilon.$$

Therefore $\mu(\text{graph}(f)) = 0$. \square

Problem 4 (?).

Fix $u \in (0, 1)$. Provided we may exchange the order of differentiation and integration, then

$$g'(u) = \int_{-\infty}^{\infty} \frac{d}{du} \left(\frac{x^n e^{ux}}{e^x + 1} \right) dx = \int_{-\infty}^{\infty} \frac{x^{n+1} e^{ux}}{e^x + 1} dx.$$

This exchange is valid if the integrand on the right-hand side is bounded (in magnitude) a.e. by an integrable function. To see this, let $\epsilon > 0$ be such that $u \in (0, 1 - \epsilon)$. Then for $x > 0$, we have

$$1 < e^x \implies e^{ux} = (e^x)^u < (e^x)^{1-\epsilon} = e^{(1-\epsilon)x}$$

and for $x < 0$ we have $e^x < 1$. So for any $x \in \mathbb{R}$, we have $e^{ux} < 1 + e^{(1-\epsilon)x}$, whereby

$$\left| \frac{x^{n+1} e^{ux}}{e^x + 1} \right| \leq \left| \frac{x^{n+1} (1 + e^{(1-\epsilon)x})}{e^x + 1} \right| \leq \left| \frac{x^{n+1}}{e^x + 1} \right| + \left| \frac{x^{n+1} e^{(1-\epsilon)x}}{e^x + 1} \right| \leq \left| \frac{x^{n+1}}{e^x + 1} \right| + \left| \frac{x^{n+1}}{e^{1+\epsilon x}} \right|.$$

Both summands on the right are integrable, so this completes the proof. \square