

Analysis Qualifying Exam, Fall 1997

Last Name:	Problem	Points	Selection	Score
First Name:	1	20	Y N	
Social Security Number:	2	20	Y N	
	3	20	Y N	
	4	20	Y N	
	5	20	Y N	
Please mark the 5 problems to be graded in the table on the right.	6	20	Y N	
	Total	100		

Problem 1. Let μ be a finite measure on (X, \mathcal{B}) , and let α be a positive function on \mathbb{R} such that $\alpha(x)/x \rightarrow \infty$ as $x \rightarrow \infty$. Suppose $f_n \rightarrow f$ a.e. on X , and $\|\alpha \circ f_n\|_1 \leq M < \infty$ for all $n \in \mathbb{N}$.

(a) Show that

$$\sup_n \|f_n \chi_{[f_n \geq K]}\|_1 \rightarrow 0, \quad \text{as } K \rightarrow \infty.$$

(Here χ_A denotes the characteristic function of the set A .)

(b) Show that for each $K > 0$, $f_n \chi_{[f_n < K]} \rightarrow f \chi_{[f < K]}$ in L^1 as $n \rightarrow \infty$.

(c) Show that $f_n \rightarrow f$ in L^1 as $n \rightarrow \infty$.

Problem 2. Consider a nonnegative valued function $f \in L^1(\mu)$. Suppose $c \geq 0$, $A = \{x \in X : f(x) \geq c\}$, and $\mu(A) = \delta > 0$. Show that

$$\sup_{\{B : \mu(B) \leq \delta\}} \int_B f d\mu = \int_A f d\mu.$$

Problem 3. Show that for every $f, g \in L^1(\mathbb{R}, \mu)$, the following equality holds

$$\lim_{h \downarrow 0} \frac{1}{h} \left(\int |f + hg| d\mu - \int |f| d\mu \right) = \int_{\Sigma_0^c} g(x) \text{sign}(f(x)) d\mu + \int_{\Sigma_0} |g(x)| d\mu,$$

where μ is a measure on \mathbb{R} and $\Sigma_0 = \{x : f(x) = 0\}$.

PROBLEM 4. Suppose the measures μ_n , $n \geq 1$, on (X, \mathcal{B}) are uniformly absolutely continuous with respect to some finite measure ν , that is, given $\epsilon > 0$ there is $\delta > 0$ such that $\nu(A) < \delta$ implies $\mu_n(A) < \epsilon$ for all n . Suppose also that $d\mu_n/d\nu \rightarrow f$, ν -a.e. Show that there exists a measure μ such that $\mu_n(A) \rightarrow \mu(A)$ for all measurable A . Identify the measure μ .

PROBLEM 5. Let μ be a finite measure on the Borel sets in a separable metric space X , and define $\text{supp}(\mu) = \{x \in X : \mu(D) > 0 \text{ for every open set } D \text{ containing } x\}$ and $G = (\text{supp}(\mu))^c$.

- (a) Show that G is open.
- (b) Show that $\mu(G) = 0$.
- (c) If B is open and $\mu(B) = 0$, show that $B \subset G$.

PROBLEM 6. Consider the following modes of convergence of functions $f_n \rightarrow f$:

- (i) almost everywhere
- (ii) in measure
- (iii) in L^1
- (iv) almost uniformly
- (v) uniformly.

- (a) Which implications among these are valid in all measure spaces? You need not prove these; just list all of them or make a diagram.
- (b) Let μ be counting measure on the positive integers. What additional implications, if any, are valid in this special case? (Prove these implications; you may use any of the implications in (a) without proof.)