

Ken

Fall 1995

Graduate Exam in Analysis, Fall 1995

1. We say that " $f_n \rightarrow f$ almost in $L^1(\mu)$ " if for all $\epsilon > 0$ there exists a set N such that $\mu(N) < \epsilon$ and $\int_{N^c} |f_n - f| d\mu \rightarrow 0$ as $n \rightarrow \infty$.

a) Show that if f_n converges to f almost in L^1 , and f_n converges to g almost in L^1 , then $f = g$ a.e.

Consider the following statements:

(1) f_n converges to f in L^1 .

(2) f_n converges to f almost in L^1 .

(3) f_n converges to f in measure.

b) Show that (1) implies (2) implies (3).

c) Show that neither of the two reverse implications in part b) hold.

2. Let μ be a measure on the Borel subsets of R^n . With τ denoting the collection of open subsets of R^n , we define the support of μ by

$$\text{support}(\mu) = \{x \in R^n : \mu(U) > 0 \text{ for all } U \in \tau \text{ with } x \in U\}.$$

Prove that the set $\text{support}(\mu)$ is closed.

3. If f_n is a sequence of continuous functions on $[0, 1]$ with $f_n \rightarrow f$ a.e. m (Lebesgue measure), prove that for any $0 \leq a < 1$, $[0, 1]$ contains a compact subset K such that $m(K) > a$ and f is continuous on K . (Hint: Apply Egoroff's theorem.)

4. Let I be the collection of bounded open intervals (a, b) of R and m Lebesgue measure. Prove there is no Borel set E such that $m(A \cap E) = \frac{1}{2}m(A)$ for all $A \in I$.

5. Evaluate the following integral: $\int_0^\infty \frac{x \cos x}{x^2 + 1} dx$.

6. Conformally map the region $\{z = x + iy \in C : y > \frac{1}{4} - x^2\}$ to the unit disk $|z| < 1$.

7. Let $f(z)$ be a bounded analytic function on $|z| < 1$, and $\{z_n\}$ be the zeroes of $f(z)$, is it true that $\sum(1 - |z_n|) < \infty$?