

REAL AND COMPLEX ANALYSIS QUALIFYING EXAM

FALL 1994

Problem 1 If $f : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} , must the derivative f' be continuous at SOME point of \mathbb{R} ? Explain. (Write f' as the limit of a sequence of continuous functions.)

Problem 2 Evaluate

$$\int_{f(\Gamma_\rho)} \frac{dz}{1+z}$$

where Γ_ρ is the square with vertices $\pm\rho, \pm i\rho$ and $f(z) = e^z$.

Problem 3 Let (X, \mathcal{B}, ν) be a finite measure space and f_n, f nonnegative bounded measurable functions on X . Define measures μ_n, μ by

$$\mu_n(A) = \int_A f_n \, d\nu, \quad \mu(A) = \int_A f \, d\nu$$

Prove: $f_n \rightarrow f$ in L^1 iff $\sup_{A \in \mathcal{B}} |\mu_n(A) - \mu(A)| \rightarrow 0$ as $n \rightarrow \infty$.

Problem 4 Evaluate $\int_0^\infty \frac{x^{1/3}}{4+x^4} \, dx$

Problem 5 Suppose $\{f_n\}$ is a sequence of continuously differentiable functions on $[0, 1]$ which converges in the L^2 sense to 0, and whose derivatives $\{f'_n\}$ also converge to 0 in the L^2 sense. Prove: $\{f_n\}$ converges to 0 uniformly.

Problem 6 Conformally map the open unit disk to a semi-infinite strip in the plane, $\{z \in \mathbb{C} : \Re z > 0, 0 < \Im z < a\}$ for some $a > 0$.

Problem 7 Suppose (X, \mathcal{B}, μ) is a finite measure space and f_n, g_n are measurable real-valued functions on X such that $f_n \rightarrow f$ in measure and $g_n \rightarrow g$ in measure.

- Show that given $\varepsilon > 0$ there exists an M such that $\mu(\{x \in X : |f_n(x)| > M\}) < \varepsilon$ for all n .
- Show that $f_n g_n \rightarrow f g$ in measure.