

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Fall 2024

1. Compute

$$\lim_{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{x^2 - 5x + 1}{1 + x^{6n}} dx.$$

Solution. The dominated convergence theorem with dominating function

$$\sup_n \left| \frac{x^2 - 5x + 1}{1 + x^{6n}} \right| \leq \begin{cases} (6x^2 + 1)x^{-6} & \text{if } |x| \geq 1, \\ 7 & \text{if } |x| < 1 \end{cases}$$

yields the answer

$$\lim_{n \rightarrow \infty} \int_{-\infty}^{\infty} \frac{x^2 - 5x + 1}{1 + x^{6n}} dx = \int_{-\infty}^{\infty} \lim_{n \rightarrow \infty} \frac{x^2 - 5x + 1}{1 + x^{6n}} dx = \int_{-1}^1 x^2 - 5x + 1 dx = \frac{8}{3}.$$

2. Prove that if $f: [0, 1] \rightarrow \mathbb{R}$ is nondecreasing and almost everywhere differentiable, then

$$\int_0^1 f'(x) dx \leq f(1) - f(0).$$

Solution. With the assumption that $f(x) = f(1)$ for all $x > 1$, define

$$g_n(x) = \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}}.$$

Note the inequality

$$\int_0^1 g_n(x) dx = n \int_{\frac{1}{n}}^{1+\frac{1}{n}} f(x) dx - n \int_0^1 f(x) dx = n \int_1^{1+\frac{1}{n}} f(x) dx - n \int_0^{\frac{1}{n}} f(x) dx \leq f(1) - f(0).$$

Because $f'(x)$ is defined and equal to $\lim_{n \rightarrow \infty} g_n(x)$ almost everywhere, Fatou's lemma implies that

$$\int_0^1 f'(x) dx = \int_0^1 \liminf_{n \rightarrow \infty} g_n(x) dx \leq \liminf_{n \rightarrow \infty} \int_0^1 g_n(x) dx \leq f(1) - f(0).$$

3. Let E be a subset of \mathbb{R} with finite Lebesgue measure, and let $f \in L^1(\mathbb{R})$. Prove that

$$\lim_{t \rightarrow \infty} \int_E f(x+t) dx = 0.$$

Solution. Let $\varepsilon > 0$. The denseness of $C_c(\mathbb{R})$ in $L^1(\mathbb{R})$ yields $g \in C_c(\mathbb{R})$ such that $\|f - g\|_{L^1} < \frac{\varepsilon}{2}$ and hence

$$\int_E |f(x+t)| dx \leq \int_{\mathbb{R}} |f(x+t) - g(x+t)| dx + \int_E |g(x+t)| dx < \frac{\varepsilon}{2} + \int_E |g(x+t)| dx.$$

Suppose that $\text{support}(g) \subseteq [-a, a]$ and $|g| \leq M$. Continuity from below yields n such that $m(E \setminus [-n, n]) < \frac{\varepsilon}{2M}$. For all $t > a + n$, then,

$$\int_E |g(x+t)| dx = \int_{E+t} |g(x)| dx = \int_{(E \setminus [-n, n]) + t} |g(x)| dx \leq m(E \setminus [-n, n]) \cdot M < \frac{\varepsilon}{2}.$$

Remark. Cf. Problem 2 on the Fall 2021 exam.

4. Let f and g be integrable functions on a complete measure space (X, \mathcal{M}, μ) , let $F_t = \{x \in X : f(x) > t\}$, and let $G_t = \{x \in X : g(x) > t\}$. Prove that

$$\int_X |f - g| d\mu = \int_{-\infty}^{\infty} \mu(F_t \Delta G_t) dt.$$

Solution. For each n , $\{x : |f(x) - g(x)| > \frac{1}{n}\}$ has finite measure by Markov's inequality, so $E = \{x : |f(x) - g(x)| > 0\} = \bigcup_{n=1}^{\infty} \{x : |f(x) - g(x)| > \frac{1}{n}\}$ is σ -finite. Tonelli's theorem, and the fact that $\mathbb{1}_{F_t \Delta G_t}(x) = |\mathbb{1}_{F_t}(x) - \mathbb{1}_{G_t}(x)| = 1$ precisely when t is between $f(x)$ and $g(x)$, implies that

$$\int_{-\infty}^{\infty} \mu(F_t \Delta G_t) dt = \int_{-\infty}^{\infty} \int_E \mathbb{1}_{F_t \Delta G_t}(x) d\mu dt = \int_E \int_{-\infty}^{\infty} \mathbb{1}_{F_t \Delta G_t}(x) dt d\mu = \int_E |f(x) - g(x)| d\mu = \int_X |f - g| d\mu.$$

Remark. Cf. Problem 2 on the Spring 2024 exam.