

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Fall 2023

1. Let $f: \mathbb{R} \rightarrow [0, \infty)$ be a function in $L^1(\mu)$. Prove that for every $\varepsilon > 0$, there exists $A \subseteq \mathbb{R}$ such that $\mu(A) < \infty$ and

$$\int_A f d\mu \geq \int_{\mathbb{R}} f d\mu - \varepsilon.$$

Solution. Let $E_n = \{x \in \mathbb{R} : f(x) \leq n\}$. The monotone convergence theorem yields N such that

$$\int_{E_N} f d\mu \geq \int_{\mathbb{R}} f d\mu - \frac{\varepsilon}{2}$$

and, for this value of N , yields M such that

$$\int_{E_N \setminus E_{1/M}} f d\mu \geq \int_{E_N} f d\mu - \frac{\varepsilon}{2}.$$

Therefore, let $A = E_N \setminus E_{1/M}$. Markov's inequality implies that

$$\mu(A) \leq \mu(\{x \in \mathbb{R} : f(x) > \frac{1}{M}\}) \leq M \int_{\mathbb{R}} f d\mu < \infty.$$

2. Prove or disprove the existence of

$$\lim_{n \rightarrow \infty} \int_0^1 \frac{(3x-1)^{2n}}{1+(3x-1)^{2n}} dx.$$

Solution. The convenient change of variables $y = 3x-1$ and the bounded convergence theorem yield

$$\lim_{n \rightarrow \infty} \int_0^1 \frac{(3x-1)^{2n}}{1+(3x-1)^{2n}} dx = \lim_{n \rightarrow \infty} \frac{1}{3} \int_{-1}^2 \left(1 - \frac{1}{1+y^{2n}}\right) dy = \frac{1}{3} \int_{-1}^2 \left(\frac{\mathbb{1}_{y \in \{\pm 1\}}}{2} + \mathbb{1}_{y \in (1,2)}\right) dy = \frac{1}{3}.$$

3. Prove that if $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is such that $\int_{\mathbb{R}^n} |f| dy > 0$, then the Hardy–Littlewood maximal function

$$Mf(x) = \sup_{r>0} \frac{1}{m(\text{Ball}(x, r))} \int_{\text{Ball}(x, r)} |f(y)| dy$$

does not belong to $L^1(\mathbb{R}^n)$.

Solution. Because $\int_{\mathbb{R}^n} |f| dy > 0$, the monotone convergence theorem yields $r > 0$ such that

$$0 < C \stackrel{\text{def}}{=} \int_{\text{Ball}(0, r)} |f(y)| dy < \infty.$$

For $|x| > r$, the inclusion $\text{Ball}(x, |x| + r) \supseteq \text{Ball}(0, r)$ implies the inequality

$$Mf(x) \geq \frac{1}{m(\text{Ball}(x, |x| + r))} \int_{\text{Ball}(x, |x| + r)} |f(y)| dy \geq \frac{1}{m(\text{Ball}(x, |x| + r))} C.$$

Let V be the volume of the unit ball. Then,

$$\int_{\mathbb{R}^n} Mf(x) dx \geq \frac{C}{V} \int_{\{|x|>r\}} \frac{1}{(|x| + r)^n} dx = \infty.$$

4. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue-measurable, then there exists a Borel-measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f = g$ almost everywhere with respect to the Lebesgue measure.

Solution. Because the Lebesgue σ -algebra is the completion of the Borel σ -algebra, each Lebesgue subset E contains a Borel subset B such that $E \setminus B$ has Lebesgue measure zero, so $\mathbb{1}_E = \mathbb{1}_B$ almost everywhere. Taking linear combinations and pointwise limits yields the result for general Lebesgue-measurable f .