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1. Let f: R— [0,00) be a function in e (w). Prove that for every € > 0, there exists A <R such that y(A) < oo and

fAfduszfdu—e.

Solution. Let E, ={x€R: f(x) < n}. The monotone convergence theorem yields N such that

fENfduszfdu—g

and, for this value of N, yields M such that
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Therefore, let A= Ex \ Eq/p. Markov’s inequality implies that

pA) < p({xeR: f(x)> 5} stRfdp@o.

2. Prove or disprove the existence of
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Solution. The convenient change of variables y = 3x — 1 and the bounded convergence theorem yield
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3. Prove thatif f: R” — R" is such that f.|f|dy > 0, then the Hardy-Littlewood maximal function
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does not belong to L' (R").

Solution. Because [pn|f|dy > 0, the monotone convergence theorem yields r > 0 such that

0<c® I ldy <o

Ball(0,r

For |x| > r, the inclusion Ball(x, | x| + ) 2 Ball(0, r) implies the inequality

Mf(x) = I[f(idy =
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Let V be the volume of the unit ball. Then,
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4. Prove that if f: R — R is Lebesgue-measurable, then there exists a Borel-measurable function g: R — R such
that f = g almost everywhere with respect to the Lebesgue measure.

Solution. Because the Lebesgue o-algebra is the completion of the Borel o-algebra, each Lebesgue subset E
contains a Borel subset B such that £\ B has Lebesgue measure zero, so 1g = 1 almost everywhere. Taking
linear combinations and pointwise limits yields the result for general Lebesgue-measurable f.



