

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Fall 2022

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue-measurable function, and suppose that E is a measurable subset of \mathbb{R} such that $0 < \int_E f(x) dx < \infty$. Show that for every $t \in (0, 1)$, there exists a measurable set $E_t \subseteq E$ for which

$$\int_{E_t} f(x) dx = t \int_E f(x) dx.$$

Solution. Let $E_u = E \cap (-\infty, u]$, and define $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$F(u) = \int_{E_u} f(x) dx.$$

Note that $F(-\infty) = 0$, $F(\infty) = \int_E f(x) dx$, and F is continuous: for every $u \in \mathbb{R}$ and every $\varepsilon > 0$, the dominated convergence theorem (with $|f| \cdot \mathbb{1}_E$ as the dominating function) yields N such that

$$|u - u'| < \frac{1}{N} \implies |F(u) - F(u')| \leq \int_{E \cap (u - \frac{1}{N}, u + \frac{1}{N})} |f(x)| dx < \varepsilon.$$

Then, for every $t \in (0, 1)$, the intermediate value theorem yields u_t such that

$$F(u_t) = \int_{E_{u_t}} f(x) dx = t \int_E f(x) dx.$$

2. Let $f \in L^1(\mathbb{R})$, and let $F(t) = \int_{\mathbb{R}} f(x) e^{itx} dx$. Prove that $F: \mathbb{R} \rightarrow \mathbb{C}$ is continuous, and prove that

$$\lim_{t \rightarrow -\infty} F(t) = \lim_{t \rightarrow \infty} F(t) = 0.$$

Note: There is a typo in the original problem statement. The codomain of F is \mathbb{C} , not \mathbb{R} .

Solution. Let $t \in \mathbb{R}$. For every sequence $(\delta_n)_{n \geq 1}$ that converges to 0, by the dominated convergence theorem with $2|f|$ as the dominating function,

$$\lim_{n \rightarrow \infty} |F(t + \delta_n) - F(t)| \leq \lim_{n \rightarrow \infty} \int_{\mathbb{R}} |f(x)| \cdot |e^{i\delta_n x} - 1| dx = 0.$$

This shows that F is continuous at t .

For every $\varepsilon > 0$, the denseness of step functions in $L^1(\mathbb{R})$ yields $g = \sum_{j=1}^n c_j \cdot \mathbb{1}_{[a_j, b_j]}$ such that

$$\lim_{t \rightarrow \infty} \int_{\mathbb{R}} f(x) e^{itx} dx \leq \lim_{t \rightarrow \infty} \int_{\mathbb{R}} |f(x) - g(x)| dx + \lim_{t \rightarrow \infty} \sum_{j=1}^n |c_j| \left| \int_{a_j}^{b_j} e^{itx} dx \right| < \varepsilon + \lim_{t \rightarrow \infty} \sum_{j=1}^n |c_j| \frac{2}{t} = \varepsilon.$$

This shows that $\lim_{t \rightarrow \infty} F(t) = 0$. Symmetrically, $\lim_{t \rightarrow -\infty} F(t) = \lim_{t \rightarrow \infty} \int_{\mathbb{R}} -f(-x) e^{itx} dx = 0$. We remark that this result is the *Riemann–Lebesgue lemma*.

3. Compute

$$\lim_{n \rightarrow \infty} \int_0^n \left(1 + \frac{x^2}{n}\right)^{-(n+1)} dx.$$

Solution. The inequality

$$0 \leq \int_n^\infty \frac{1}{(1 + \frac{x^2}{n})^{n+1}} dx \leq \int_n^\infty \frac{1}{(1+x)^{n+1}} dx = \frac{1}{n(n+1)^n}$$

and the dominated convergence theorem, with $(1+x^2)^{-2}$ as the dominating function, imply that

$$\lim_{n \rightarrow \infty} \int_0^n \frac{1}{(1 + \frac{x^2}{n})^{n+1}} dx = \lim_{n \rightarrow \infty} \int_0^\infty \frac{1}{(1 + \frac{x^2}{n})^{n+1}} dx = \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

4. Let $f \in L^1(\mathbb{R})$, and consider the maximal function

$$Mf(x) = \sup_{h>0} \frac{1}{2h} \int_{x-h}^{x+h} |f(t)| dt.$$

Prove that there exists a constant $A > 0$ such that for every $\alpha > 0$,

$$m(\{x \in \mathbb{R} : Mf(x) > \alpha\}) \leq \frac{A}{\alpha} \|f\|_{L^1}.$$

Solution. This is the Hardy–Littlewood maximal inequality [Folland, Theorem 3.17].