

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Fall 2021

1. Let f be a Lebesgue-integrable function on \mathbb{R}^d . Prove that for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$m(A) < \delta \implies \int_A |f| dm < \varepsilon.$$

Solution. Let $E_n = \{x \in \mathbb{R}^d : |f(x)| > n\}$. The dominated convergence theorem yields N such that $\int_{E_N} |f| dm < \varepsilon/2$. Then, with $\delta = \varepsilon/(2N)$,

$$m(A) < \delta \implies \int_A |f| dm = \int_{A \cap E_N} |f| dm + \int_{A \setminus E_N} |f| dm < \frac{\varepsilon}{2} + m(A) \cdot N < \varepsilon.$$

Remark. What we have proven is that the measure $A \mapsto \int_A |f| dm$ is absolutely continuous with respect to m .

2. Let f be a Lebesgue-integrable function on \mathbb{R} . Prove that

$$\lim_{h \rightarrow 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx = 0.$$

Solution. Let $\varepsilon > 0$. The denseness of $C_c(\mathbb{R})$ in $L^1(\mathbb{R})$ yields $g \in C_c(\mathbb{R})$ such that $\|f - g\|_{L^1} < \varepsilon/2$. The continuity of g and the bounded convergence theorem imply that

$$\lim_{h \rightarrow 0} \int_{\mathbb{R}} |g(x+h) - g(x)| dx = \int_{\mathbb{R}} \lim_{h \rightarrow 0} |g(x+h) - g(x)| dx = 0.$$

Then, the triangle inequality implies that

$$\lim_{h \rightarrow 0} \int_{\mathbb{R}} |f(x+h) - f(x)| dx \leq \lim_{h \rightarrow 0} \int_{\mathbb{R}} |f(x+h) - g(x+h)| dx + 0 + \int_{\mathbb{R}} |g(x) - f(x)| dx < \varepsilon.$$

3. Let f and f_1, f_2, \dots be Lebesgue-measurable functions on \mathbb{R} . Prove that if there exists C such that for every n ,

$$\int_{\mathbb{R}} |f_n(x) - f(x)| dx \leq \frac{C}{n^2},$$

then $f_n \rightarrow f$ almost everywhere as $n \rightarrow \infty$.

Solution. Let $g(x) = \limsup_{n \rightarrow \infty} |f_n(x) - f(x)|$. For each $k \geq 2$,

$$\int_{\mathbb{R}} g(x) dx \leq \int_{\mathbb{R}} \sup_{n \geq k} |f_n(x) - f(x)| dx \leq \int_{\mathbb{R}} \sum_{n \geq k} |f_n(x) - f(x)| dx = \sum_{n \geq k} \int_{\mathbb{R}} |f_n(x) - f(x)| dx \leq \sum_{n=k}^{\infty} \frac{C}{n^2} \leq \frac{C}{k-1}.$$

Then, $\int_{\mathbb{R}} g(x) dx = 0$. Because g is nonnegative, $g = 0$ almost everywhere, i.e., $f_n \rightarrow f$ almost everywhere.

4. Let $f: [0, 1] \rightarrow \mathbb{R}$ be a Lebesgue-measurable function that is positive almost everywhere. Prove that if E_1, E_2, \dots are Lebesgue-measurable subsets of $[0, 1]$ such that

$$\lim_{k \rightarrow \infty} \int_{E_k} f(x) dx = 0,$$

then $\lim_{k \rightarrow \infty} m(E_k) = 0$.

Solution. Let $A_n = \{x: \frac{1}{n-1} > f(x) \geq \frac{1}{n}\}$, with $A_1 = \{x: f(x) \geq 1\}$. By Tonelli's theorem,

$$0 = \lim_{k \rightarrow \infty} \int f \cdot \mathbb{1}_{E_k} dm \geq \lim_{k \rightarrow \infty} \int \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{1}_{A_n} \cdot \mathbb{1}_{E_k} dm = \sum_{n=1}^{\infty} \frac{1}{n} \lim_{k \rightarrow \infty} \int \mathbb{1}_{A_n} \cdot \mathbb{1}_{E_k} dm \geq 0.$$

A sum of nonnegative numbers is zero only if each of its terms is zero, so $\lim_{k \rightarrow \infty} m(A_n \cap E_k) = 0$ for all n . The equality $m(\bigcup_{n=1}^{\infty} A_n) = m(\{x: f(x) > 0\}) = 1$ and the dominated convergence theorem then imply that

$$\lim_{k \rightarrow \infty} m(E_k) = \lim_{k \rightarrow \infty} \sum_{n=1}^{\infty} m(A_n \cap E_k) = \sum_{n=1}^{\infty} \lim_{k \rightarrow \infty} m(A_n \cap E_k) = 0.$$

Remark. This is Problem 1 on the Spring 2023 exam.