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Problem 1. Let (X, A, ) be a measure space and f, g, f,., g, measurable so that f, — f
and g, — ¢ in measure. Is it true that f3 + g, — f + ¢ in measure if

(a) u(X) =1
(b) u(X)=o0

In both cases prove the statement or provide a counter example.
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Problem 2. Let f € L'(R). Show that the series
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converges absolutely for Lebesgue almost every = € R.
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Problem 3. Assume that £ C R is such that m(E N (E +t)) = 0 for all £ # 0, where
m is the Lebesgue measure on R. Prove that m(E) = 0.
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Problem 4. Let (X, A, ) be a measure space and f, a sequence of non-negative
measurable functions. Prove that if sup,, f,, is integrable, then

lim su])/ fadp < / lim sup fdju.
n JX JX n
Also show that

(a) the inequality may be strict and

(b) that the inequality may fail unless sup,, f, € L.
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