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Call these sets En .
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Assume fn-170 in measure .
Then for some E > 0

,

aelsrxilfnlxl > E3 ) -130 as n -70 .
Call these sets En

.
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Fx ¥,
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Sf dm z Sen Iida = MIEN ) # Ho as n→ - .

This is a contradiction ,
so fn -> 0 in measure .

D



16F

Define S := { XE Xi XE Aj for infinitely many j } .
Define Ski- { X EX : XEA ; for exactly k different j }

,
K -- 91,2, . - -

Assume Mls) -- O
.
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.
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First, take BED
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If OZB
,

we have Y→o+¥* Spin "¥tu - Sii "÷du
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* DCT

* hlxlce ) → 0 as E -20 b/c h has compact⇒ bounded support .


