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1. Prove that for almost all z € [0, 1], there are at most finitely many rational numbers with reduced
form p/q such that ¢ > 2 and |z — p/q| < 1/(qlogq)?. (Hint: Consider intervals of length 2/(qlog ¢)*
centered at rational points p/q.)
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2. Suppose that the real-valued function f(z) is nondecreasing on the interval [0,1]. Prove that

there exists a sequence of continuous functions f,, (x) such that f,, — f pointwise on this interval.
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3. Let (X, p) be a finite measure space. Assume that a sequence of integrable functions f,, satisfies
fn — f in measure, where f is measurable. Assume that f,, satisfies the following property: For every

€ > 0 there exists § > 0 such that
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4. Consider the following two statements about a function f: [0,1] — R:
(i) f is continuous almost everywhere

(ii) f is equal to a continuous function g almost everywhere.

Does (i) imply (ii)? Prove or give a counterexample. Does (ii) imply (i)? Prove or give a counterexample.
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