

1. Assume that f is integrable on $(0, 1)$. Prove that

$$\lim_{a \rightarrow \infty} \int_0^1 f(x) x \sin(ax^2) dx = 0.$$

First let $f = \chi_{(b, c)}$ for $(b, c) \subset (0, 1)$.

$$\begin{aligned} \text{Then} \quad & \lim_{a \rightarrow \infty} \int_0^1 \chi_{(b, c)}(x) x \sin(ax^2) dx \\ &= \lim_{a \rightarrow \infty} \int_b^c x \sin(ax^2) dx \\ &= \lim_{a \rightarrow \infty} \left[-\frac{1}{2a} \cos(ax^2) \right]_b^c \\ &= \lim_{a \rightarrow \infty} \frac{1}{2a} [\cos(ab^2) - \cos(ac^2)] \end{aligned}$$

And $|\frac{1}{2a} [\cos(ab^2) - \cos(ac^2)]| \leq \frac{1}{a} \rightarrow 0$ as $a \rightarrow \infty$,
 $\Rightarrow \lim_{a \rightarrow \infty} \int_0^1 \chi_{(b, c)}(x) x \sin(ax^2) dx = 0$.

By linearity of the integral, this is true when f is a simple function on sets which are finite unions of open intervals.

Since we have the Lebesgue measure, and since $f \in L^1$, for $\epsilon > 0$, \exists such a simple function ϕ with $\int_0^1 |f - \phi| < \epsilon$.

$$\begin{aligned} \text{Then,} \quad & \lim_{a \rightarrow \infty} \left| \int_0^1 f(x) x \sin(ax^2) dx - \int_0^1 \phi(x) x \sin(ax^2) dx \right| \\ & \leq \lim_{a \rightarrow \infty} \int_0^1 |f(x) - \phi(x)| x \sin(ax^2) dx \\ & \leq \lim_{a \rightarrow \infty} \int_0^1 |f(x) - \phi(x)| dx \quad \text{since } |x \sin(ax^2)| \leq 1 \text{ on } (0, 1). \\ & < \epsilon \end{aligned}$$

$\Rightarrow \lim_{a \rightarrow \infty} \left| \int_0^1 f(x) x \sin(ax^2) dx \right| < \epsilon$, and since ϵ was arbitrary, we conclude

$$\lim_{a \rightarrow \infty} \int_0^1 f(x) x \sin(ax^2) dx = 0.$$

□

2. Let (X, \mathcal{M}, μ) be a measure space, and let f and $f_1, f_2, f_3 \dots$ be real valued measurable functions on X . If $f_n \rightarrow f$ in measure and if $F: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous, prove that $F \circ f_n \rightarrow F \circ f$ in measure.

$f_n \rightarrow f$ in measure $\Leftrightarrow \mu(\{x: |f_n(x) - f(x)| \geq \varepsilon\}) \rightarrow 0$ as $n \rightarrow \infty$.

NTS $\mu(\{x: |F \circ f_n(x) - F \circ f(x)| \geq \varepsilon\}) \rightarrow 0$ as $n \rightarrow \infty$.

F uniformly cont. $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x \in X$, if $y \in (x - \delta, x + \delta)$, then $|F(y) - F(x)| < \varepsilon$.

$\exists N$ s.t. $\forall n \geq N \quad \mu(\{x: |f_n(x) - f(x)| \geq \delta\}) < \varepsilon$.

$$|f_n(x) - f(x)| < \delta \Rightarrow |F \circ f_n(x) - F \circ f(x)| < \varepsilon$$

$$\begin{aligned} \text{Thus, } \{x: |f_n(x) - f(x)| < \delta\} &\subset \{x: |F \circ f_n(x) - F \circ f(x)| < \varepsilon\} \\ \Rightarrow \{x: |f_n(x) - f(x)| \geq \delta\} &\supset \{x: |F \circ f_n(x) - F \circ f(x)| \geq \varepsilon\} \end{aligned}$$

$$\begin{aligned} \Rightarrow \mu(\{x: |F \circ f_n(x) - F \circ f(x)| \geq \varepsilon\}) &\leq \mu(\{x: |f_n(x) - f(x)| \geq \delta\}) \\ &\rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned}$$

Hence, $F \circ f_n \rightarrow F \circ f$ in measure.

□

14 Fa. 3

3. Let f_n be **nonnegative** measurable functions on a measure space (X, \mathcal{M}, μ) which satisfy $\int f_n d\mu = 1$ for all $n = 1, 2, \dots$. Prove that

$$\limsup_n (f_n(x))^{1/n} \leq 1$$

for μ -a.e. x .

$$\lim_{n \rightarrow \infty} n^{1/n} = 1$$

$f_n(x) > n$ on a shrinking measure,

14 Fa. 4

4. Let $-\infty < a < b < \infty$. Suppose $F: [a, b] \rightarrow \mathbb{C}$.

(a) Define what it means for F to be absolutely continuous on $[a, b]$.

(b) Give an example of a function which is uniformly continuous but not absolutely continuous. (Remember to justify your answer.)

(c) Prove that if there exists M such that $|F(x) - F(y)| \leq M|x - y|$ for all $x, y \in [a, b]$, then F is absolutely continuous. Is the converse true? (Again, remember to justify your answer.)

a)