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2. Let \.\'._\L//l be a measure space, and let / and h/.’ Iv
R is uniformly continuous, prove that F
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3. Let f, be nonnegative measurable functions on a measure space (X, M, u) which satisfy
[ fadp=1foralln=1,2,.... Prove that
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4. Let —00 < a < b < 0. Suppose F: [a,b] - C.
(a) Define what it means for F' to be absolutely continuous on [a,b].
(b) Give an example of a function which is uniformly continous but not absolutely continuous. (Remember
to justify your answer.)
(¢) Prove that if there exists M such that |F(z)—F(y)| < M|z—y| for all z,y € [a,b], then F is absolutely
continous. Is the converse true? (Again, remember to justify your answer.)



