

2008, Fall

Incomplete: 4(b).**Problem 1.**

It's enough to show that μ and ν agree on open rectangles, since these generate $\mathcal{B}_{\mathbb{R}^2}$. So, suppose $R = (x_1, x_2) \times (y_1, y_2)$ is such a rectangle, and define the vectors $\mathbf{a} := (x_1, y_1)$, $\mathbf{b} := (x_2, y_2)$. Let L be the segment $\{t\mathbf{a} + (1-t)\mathbf{b} \mid t \in (0, 1)\}$, let R_1 be the open triangle with endpoints $\mathbf{a}, (x_1, y_2), \mathbf{b}$, and let R_2 be the open triangle with endpoints $\mathbf{a}, (x_2, y_1), \mathbf{b}$. Then $R = L \sqcup R_1 \sqcup R_2$, and

$$\mu(R) = \mu(L) + \mu(R_1) + \mu(R_2), \quad \nu(R) = \nu(L) + \nu(R_1) + \nu(R_2).$$

But μ and ν agree on the open triangles R_1, R_2 , so we're done if we can show that $\mu(L) = \nu(L)$. Let \mathbf{u} be a unit vector orthogonal to $\mathbf{b} - \mathbf{a}$, and for any $\epsilon > 0$, let L_ϵ be the open triangle with endpoints $\mathbf{a} - \epsilon\mathbf{u}, \mathbf{a} + \epsilon\mathbf{u}, \mathbf{b}$. Hence we obtain a family of open triangles $\{L_{1/j}\}_{j=1}^\infty$ with $\bigcap_{j=1}^\infty L_{1/j} = L$. Moreover, $\mu(L_1) \leq \mu(\mathbb{R}^2) < \infty$ and $\nu(L_1) \leq \nu(\mathbb{R}^2) < \infty$, so by continuity from above of the measures μ and ν ,

$$\mu(L) = \mu\left(\bigcap_{j=1}^\infty L_{1/j}\right) = \lim_{j \rightarrow \infty} \mu(L_{1/j}) = \lim_{j \rightarrow \infty} \nu(L_{1/j}) = \nu\left(\bigcap_{j=1}^\infty L_{1/j}\right) = \nu(L),$$

since μ and ν agree on each of the open triangles $\{L_{1/j}\}_{j=1}^\infty$. □

Problem 2.

For fixed $x > 0$, we have

$$\lim_{n \rightarrow \infty} \frac{1 + nx^2 + n^2x^4}{(1 + x^2)^n} = \lim_{n \rightarrow \infty} \frac{1}{(1 + x^2)^n} + \lim_{n \rightarrow \infty} \frac{nx^2}{(1 + x^2)^n} + \lim_{n \rightarrow \infty} \frac{n^2x^4}{(1 + x^2)^n}.$$

The first limit is clearly 0. The second and third limits are evaluated via L'Hôpital,

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{nx^2}{(1 + x^2)^n} &= \lim_{n \rightarrow \infty} \frac{x^2}{\exp(n \log(1 + x^2)) \log(1 + x^2)} = 0, \\ \lim_{n \rightarrow \infty} \frac{n^2x^4}{(1 + x^2)^n} &= \lim_{n \rightarrow \infty} \frac{2nx^4}{\exp(n \log(1 + x^2)) \log(1 + x^2)} = 0. \end{aligned}$$

Then provided that we can justify exchanging the limit and the integral, we have

$$\lim_{n \rightarrow \infty} \int_0^\infty \frac{1 + nx^2 + n^2x^4}{(1 + x^2)^n} dx = \int_0^\infty \lim_{n \rightarrow \infty} \frac{1 + nx^2 + n^2x^4}{(1 + x^2)^n} dx = 0.$$

To see that this is indeed justified, note that for any $x > 0$, we have

$$\frac{1 + nx^2 + n^2x^4}{(1 + x^2)^n} = \frac{1 + nx^2 + n^2x^4}{\sum_{j=0}^n \binom{n}{j} x^{2j}} \leq \frac{1 + nx^2 + n^2x^4}{\binom{n}{3} x^{2 \cdot 3}} \leq \frac{n}{(n-1)(n-2)} \cdot \frac{6(1 + x^2 + x^4)}{x^6}$$

by expanding and rearranging as necessary. Now when $n \geq 3$, we have

$$\frac{d}{dn} \frac{n}{(n-1)(n-2)} = \frac{2-n^2}{(n-1)^2(n-2)^2} \leq 0,$$

whereby the function $n/(n-1)(n-2)$ starts to decrease at $n = 3$, yielding

$$\frac{1+nx^2+n^2x^4}{(1+x^2)^n} \leq \frac{3}{(3-1)(3-2)} \cdot \frac{6(1+x^2+x^4)}{x^6} = \frac{9(1+x^2+x^4)}{x^6}.$$

Regarded as a function of x , the right-hand side is integrable on $(0, \infty)$, and thus we may apply dominated convergence to exchange the limit and integral above as we wished. \square

Problem 3.

Let $C > 0$ be such that $|f| \leq C$ a.e. Then using Fubini,

$$\begin{aligned} \|f\|_{L^1(\mathbb{R})} &= \int_{\mathbb{R}} |f(x)| dx = \int_{\mathbb{R}} \int_0^{|f(x)|} dt dx = \int_{\mathbb{R}} \int_0^C \mathbb{1}_{\{|f| \geq t\}} dt dx = \int_0^C \int_{\mathbb{R}} \mathbb{1}_{\{|f| \geq t\}} dx dt \\ &= \int_0^C m(|f| \geq t) dt \leq \int_0^C \frac{M}{t^c} dt = \frac{MC^{1-c}}{1-c} < \infty, \end{aligned}$$

as desired. \square

Problem 4.

(a) For any $\{x_j\}_{j=0}^m \subset [0, 1]$ with $0 = x_0 < x_1 < \dots < x_m = 1$,

$$\sum_{j=1}^m |f(x_j) - f(x_{j-1})| = \liminf_{n \rightarrow \infty} \sum_{j=1}^m |f_n(x_j) - f_n(x_{j-1})| \leq \liminf_{n \rightarrow \infty} T_0^1(f_n).$$

It follows that the desired inequality holds for $T_0^1(f)$, the supremum of the left-hand side over all partitions $\{x_j\}_{j=0}^m \subset [0, 1]$ as above. \square