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Problem 1.

Let n € N and ¢ > 0. Choose € > 0 small enough so that ¢ > ¢. By dominated convergence, we
may move the operator d”/d¢™ inside the given integral since
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and the right-hand side, regarded as a function of x on R, is integrable. Hence
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whereby setting t := 1 gives
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as desired. 0

Problem 2.
(a) Set f; := j*L(g-1) for each j € N. Then
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However, for any fixed x € (0,1), for all j € N sufficiently large, we have 7! < 2 and so
fi(xz) =0. Thus lim;_, f;(z) = 0. O

(b) Let f:[0,1] — [0,1] be the well-known Devil’s staircase function. Then f increases contin-
uously from f(0) = 0 to f(1) = 1. But outside of the measure-0 Cantor set, f’ exists and is

identically 0, so f(1) — f(0) =1 #0 = [; f'(z)d. 0
Problem 3.

Set E; :={g; > 277} for each j € N. If z € Ej for only finitely many j € N, then there’s some
N € N so that z € Ef for all j > N, and hence the sum converges for this z,
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Hence we're done if we can show that the set of those x’s belonging to infinitely many F;’s is a
null set. This is precisely the set limsup,_, ., E£;, and we have
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But each summand on the right is bounded above by 277, and the sum Z;}; 277 is convergent,
whereby the limit on the right is 0. ]
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Problem 4 (7).
Set Ey := p({|g| > t}). Integrating by parts,
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By Fubini, the first integral is equal to
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Thus the result follows if we can show that lim;_,o. ()17 = 0. Let {¢;}32, C LP(R9) be a sequence
of nonnegative simple functions approaching g with || < |p2| < --- < |g| a.e. Then for any ¢t > 0,
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For any j € N, writing ¢; = > ", axla, for some a; > 0 and A, € M, the set {|¢;| > t} has

measure 0 as soon as ¢t > maxi<k<m @k, Whereby
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lim u(6)” = lim lim_p({l¢s| > e = 0.



	2007, Fall

