

2006, Fall

Problem 1.

Let S be the collection of all 1-point subsets of \mathbb{R} , and $\sigma(S)$ the σ -algebra generated by S . Now let $\mathcal{F} := \{E \subset \mathbb{R} \mid E \text{ is countable or cocountable}\}$ (it's easy to show that \mathcal{F} is a σ -algebra). We claim that $E \in \sigma(S)$ if and only if $E \in \mathcal{F}$. The inclusion $S \subset \mathcal{F}$ is immediate, so $\sigma(S) \subset \mathcal{F}$. Conversely if $E \in \mathcal{F}$ is countable (resp. cocountable), then it's a countable union (resp. complement of a countable union) of 1-point subsets, and hence $E \in \sigma(S)$; so $\mathcal{F} \subset \sigma(S)$. \square

Problem 2.

(a) **True.** By Hölder, $\|f\|_{L^1(\mu)} \leq \|f\|_{L^2(\mu)} \|1\|_{L^2(\mu)} = \|f\|_{L^2(\mu)} \mu(X)^{1/2} < \infty$. \square

(b) **False.** Set $X := (1, \infty)$ with Lebesgue measure μ , and $f(x) := x^{-1}$. Then

$$\|f\|_{L^1(\mu)} = \int_1^\infty x^{-1} dx = \infty, \quad \|f\|_{L^2(\mu)} = \left(\int_1^\infty x^{-2} dx \right)^{1/2} = 1 < \infty.$$

 \square

(c) **False.** Set $X := (0, 1)$ with Lebesgue measure μ , and $f(x) := x^{-1/2}$. Then

$$\|f\|_{L^1(\mu)} = \int_0^1 x^{-1/2} dx = 2 < \infty, \quad \|f\|_{L^2(\mu)} = \left(\int_0^1 x^{-1} dx \right)^{1/2} = \infty.$$

 \square

(d) **False.** Extend the function f in (c) to all of $X := \mathbb{R}$ by setting $f \equiv 0$ outside of $(0, 1)$. \square

Problem 3 (?)

(a) **No.** We have $|f(x, y)| = |f(y, x)|$ for any $(x, y) \in \mathbb{R}^2$, and so by symmetry

$$\|f\|_{L^1(\mathbb{R}^2)} = \iint_{\mathbb{R}^2} |f| = 2 \iint_{\{x > y\}} |f(x, y)| dy dx = 2 \int_{-\infty}^{\infty} \underbrace{\int_{-\infty}^x e^{-(x-y)} dy}_{=1} dx = \infty$$

(the inner integral is equal to 1 by an easy computation). \square

(b) **Yes.** Both integrals are equal to 0 by substitution. \square

Problem 4.

The function $|f|$ is in $L^1(\mathbb{R})$, and for each $n \in \mathbb{N}$ we have $|f_n| = |f| \cdot |\sin(x)|^n \leq |f|$, hence

$$\|f_n\|_{L^1(\mathbb{R})} = \int_{\mathbb{R}} |f_n| \leq \int_{\mathbb{R}} |f| = \|f\|_{L^1(\mathbb{R})} < \infty.$$

Now $|\sin(x)| < 1$ for a.e. $x \in \mathbb{R}$, so $\lim_{n \rightarrow \infty} f_n = 0$ a.e. Then

$$\lim_{n \rightarrow \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} 0 dx = 0$$

by dominated convergence. \square