

REAL ANALYSIS QUALIFYING EXAM
USC DEPARTMENT OF MATHEMATICS
SEPTEMBER 26, 2002

INSTRUCTIONS. Do all of the following problems, *on separate pieces of paper*.

Problem 1. Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous on every interval $[a, b]$, and that both f and f' are in $L^1(\mathbb{R})$. Prove:

$$\int_{-\infty}^{\infty} f'(x) dx = 0.$$

Problem 2. Suppose (X, \mathcal{A}, μ) is a measure space and $\{f_n\}$, $\{g_n\}$ are sequences of measurable real-valued functions which converge in measure to f and g respectively.

- Prove: if $\mu(X) < +\infty$, then $\{f_n g_n\}$ converges in measure to fg .
- Show (by counterexample) that the hypothesis $\mu(X) < +\infty$ cannot be removed in part (a).

Problem 3. Prove: if $f \in L^1(0, 1)$ and $a > -1$, then the integral

$$f_a(x) = \int_0^x (x-t)^a f(t) dt$$

exists for almost every $x \in (0, 1)$, and that $f_a \in L^1(0, 1)$.

Problem 4. Let μ be a measure on the σ -algebra of Lebesgue measurable subsets of \mathbb{R} which is translation-invariant,

$\mu(E + a) = \mu(E)$ for all Lebesgue-measurable sets E and all $a \in \mathbb{R}$,
and that $\mu([0, 1]) < +\infty$. Prove that μ is a multiple of Lebesgue measure.