

REAL ANALYSIS QUALIFYING EXAM (MATH 525A)

FALL 2000

(1) Let μ be a finite Borel measure on \mathbb{R} and let

$$f(x) = \int_{\mathbb{R}} \frac{d\mu(y)}{|x - y|^{1/2}}$$

Here $\frac{1}{|x - y|^{1/2}}$ should be interpreted as $+\infty$ when $x = y$.

(a) Prove that f is finite a.e. with respect to Lebesgue measure on \mathbb{R} . HINT: Consider $[-M, M]$ in place of \mathbb{R} .

(b) Show that f need not be finite a.e. with respect to μ .

(2) Let (X, \mathcal{M}, μ) be a measure space and suppose $\{f_n\}$ is a sequence of measurable functions on X such that $\{f_n(x)\}$ is a Cauchy sequence for almost every x . Show that for each $\epsilon > 0$ there is a measurable $E \subset X$ and a finite M such that $\mu(X \setminus E) < \epsilon$ and $|f_n(x)| \leq M$ for all $x \in E$ and $n \geq 1$.

(3) Suppose $\{\mu_n\}$ is a sequence of finite measures on (X, \mathcal{M}) and $\mu_n \rightarrow \mu$ uniformly on \mathcal{M} , for some set function μ . Show that μ is countably additive. (Note: We don't assume μ is a measure.) HINT: For E_1, E_2, \dots disjoint and $k \geq 1$, consider $\mu(\bigcup_{i=1}^k E_i) - \sum_{i=1}^k \mu(E_i)$.

(4) Suppose μ_1, ν_1 are positive σ -finite measures on (X_1, \mathcal{M}_1) and μ_2, ν_2 are positive σ -finite measures on (X_2, \mathcal{M}_2) , with $\mu_1 \ll \nu_1$ and $\mu_2 \ll \nu_2$. Show that $\mu_1 \times \mu_2 \ll \nu_1 \times \nu_2$. (Here \ll denotes absolute continuity.)