Justify all arguments completely. Every ring R is assumed to have a unit $1 \in R$. Given a field k, a k-algebra A is a ring which is equipped with a central ring homomorphism $k \to A$. Reference specific results whenever possible.

- (1) Let R be a finite ring.
 - (a) If $r^2 = 0$ implies r = 0 for any $r \in R$, show that R is commutative.
 - (b) Show by example that the converse is false.

Proof. Because R is finite, R is an Artinian ring.

(a) Suppose $0 \neq x$ is nilpotent and $x^n = 0$ with n minimal. If n is odd, then $x^{n+1} = 0$ implies $x^{\frac{n+1}{2}} = 0$, which contradicts the minimality of n. If n is even, then $x^{\frac{n}{2}} = 0$ contradicts the minimality of n. Since R is Artinian, J(R) is nilpotent; hence J(R) = 0. By Wedderburn-Artin theorem, $R \cong \prod_{i=1}^n D_i$ because R has no nilpotent element. Since R is finite, each D_i is a finite division ring; hence, D_i 's are fields. Therefore, R is commutative.

- (b) Note that $\mathbb{Z}/4\mathbb{Z}$ is a commutative ring, but $2^2 = 0$.
- (2) Let n be an integer which is divisible by an odd prime. Prove that the dihedral group D_n of order 2n is not nilpotent.

Proof. Suppose D_n has the presentation $\langle r,s \mid r^n=s^2=1, srs=r^{-1} \rangle$. Since $p \mid n$, we have $r^{\frac{n}{p}}$ is a nontrivial element of order p. Because $\gcd(2,p)=1$ and $\langle s \rangle \triangleleft D_n$ and sylow subgroups of nilpotent groups are normal, we have s commutes with $r^{\frac{n}{p}}$. However, we have

$$sr^{\frac{n}{p}}s = r^{-\frac{n}{p}} \implies r^{\frac{2n}{p}} = 1.$$

This contradicts with the fact that p is odd.

(3) Let R be a commutative ring. Consider collections of prime ideals $\mathfrak{p}_1,...,\mathfrak{p}_m$ and $\mathfrak{q}_1,...,\mathfrak{q}_n$ in R which satisfy $\mathfrak{p}_i \not\subseteq \mathfrak{p}_j$ and $\mathfrak{q}_r \not\subseteq \mathfrak{q}_s$ at all pairs of distinct indices, and suppose $(\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_m) = (\mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n)$. Prove that m = n and that, after applying a permutation $\sigma \in S_n$, we have $\mathfrak{p}_i = \mathfrak{q}_{\sigma(i)}$ at all i.

Proof. The main observation is that if $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ for some prime ideal \mathfrak{p} and ideals \mathfrak{a} , \mathfrak{b} , then either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$. This is because if $a \in \mathfrak{a} \setminus \mathfrak{p}$ and $b \in \mathfrak{b} \setminus \mathfrak{p}$ implies that $ab \in \mathfrak{a} \cap \mathfrak{b} \subsetneq \mathfrak{p}$ contradicts to the assumption that \mathfrak{p} is prime.

From the observation, we have $\mathfrak{q}_1\supseteq\mathfrak{p}_i$ for some i and $\mathfrak{p}_i\supseteq\mathfrak{q}_j$ for some j. Since $\mathfrak{q}_r\not\subseteq\mathfrak{q}_s$ for all $r\neq s$, we must have j=1 and $\mathfrak{q}_1=\mathfrak{p}_i$. Therefore, we have $n\leq m$ and $\mathfrak{q}_i=\mathfrak{p}_j$ for some j. Using the same argument and $\mathfrak{p}_i\not\subseteq\mathfrak{p}_j$ for all $i\neq j$, we have $m\leq n$. Therefore, m=n and the result follows.

(4) Recall that a \mathbb{Z} -module M is called torsion free if, for each nonzero integer n and nonzero $m \in M$, the element $n \cdot m$ nonzero. Recall also that a \mathbb{Z} -module M is called projective if, for any surjective module map $\pi: N_0 \to N_1$ and arbitrary module map $f: M \to N_1$ there exists a module map $\overline{f}: M \to N_0$ which satisfies $\pi f = f$. Prove that a finitely generated \mathbb{Z} -module M is projective if and only if it is torsion free.

Proof. The result holds for any finitely generated module over a PID. Recall that a projective module is a direct summand of a free module. Assume M is a finitely generated \mathbb{Z} -module. By the structure theorem for finitely generated modules over a PID, we have $M \cong \mathbb{Z}^r \oplus \operatorname{Tor}(M)$. Therefore, M is projective if and only if $\operatorname{Tor}(M) = 0$, which means M is free.

(5) Let k be a field and A(k) be the group ring $k[\mathbb{Z}/p\mathbb{Z}]$ at a prime p. (This ring has basis provided by the elements g in $\mathbb{Z}/p\mathbb{Z}$ and multiplication $(\sum_g a_g \cdot g)(\sum_h a_h \cdot h) = \sum_{g,h} a_g a_h \cdot gh$.) Take for

granted that A(k) is semisimple whenever k is of characteristic 0. Provide the Artin-Wedderburn decomposition for A(k) when:

- (a) $k = \mathbb{Q}$.
- (b) $k = \mathbb{C}$.

Proof. Let $G = \mathbb{Z}/p\mathbb{Z}$. Then k[G] is semisimple since p does not divides the characteristic of k. Since G is abelian, irreducible representations of G are one-dimensional. Moreover, there is a ring isomorphism $k[G] \cong k[X]/(X^p-1)$ by sending a generator of G to the variable X.

(a) Since $X^p - 1 = (X - 1)(X^{p-1} + \dots + 1)$ over \mathbb{Q} , the Chinese remainder theorem says that

$$\mathbb{Q}[G] \cong \mathbb{Q}[X]/(X-1) \oplus \mathbb{Q}[X]/(X^{p-1} + X^{p-2} + \dots + 1) \cong \mathbb{Q} \oplus \mathbb{Q}(\zeta_n)$$

where ζ_p is a primitive p-th root of unity.

In this proof, we used the trick that $x^{p-1}+\cdots+1=(x^p-1)/(x-1)=f(x)$ is irreducible by checking f(x+1) is irreducible using Eisentein's criterion.

- (b) Since $\mathbb C$ is algebraically closed, $\mathbb C[G]\cong\mathbb C^p$ where each copy of $\mathbb C$ corresponds to a root of X^p-1 .
- (6) Take $R=\mathbb{C}[x_1,...,x_m]$ and $A\in M_{n\times n}(R)$. Write $A=[f_{ij}]$ for functions $f_{ij}\in R$. Prove that A is invertible if and only if, at each point $z\in\mathbb{C}^m$, the complex matrix $A_z=[f_{ij}(z)]$ is invertible. [Note: You may use the fact that A is invertible if and only if its determinant is a unit in R.]

Proof. Note that $f \in R$ is a unit if and only if $f(z) \in \mathbb{C}^{\times}$ for all $z \in \mathbb{C}^m$ and A is invertible if and only if $\det(A) \in R^{\times}$. Therefore, A is invertible if and only if $\det(A(z)) \in \mathbb{C}^{\times}$ for all $z \in \mathbb{C}^m$, i.e. A(z) is invertible for all $z \in \mathbb{C}^m$.

To prove the first claim, we note that $f \in R$ is a unit implies that fg = 1 for some $g \in R$. Evaluate both side at $z \in \mathbb{C}^m$, we have $f(z) \neq 0$ for all $z \in \mathbb{C}^m$ if f is a unit. Conversely, if $f(z) \neq 0$ for all $z \in \mathbb{C}^m$, then $V(f) = \emptyset$ and I(V(f)) = R implies that f is a unit. \square