

Justify all arguments completely. Every ring R is assumed to have a unit $1 \in R$. Reference specific results whenever possible.

(1) Let G be a simple group of order 168. Show that G is isomorphic to a subgroup of A_8 , the alternating group of degree 8. Show that G is not isomorphic to a subgroup of A_6 .

Proof. Note that $7 \mid 168$ and $7 \nmid |A_6| = \frac{6!}{2}$. Hence, $G \not\leq A_6$.

Since G is simple, any Sylow subgroups of G is not normal. Note that $|G| = 2^3 \cdot 3 \cdot 7$. We have $n_7 = 8$ because $n_7 \mid 24$ and $n_7 \equiv 1 \pmod{7}$. Let G acts on the Sylow 7-subgroups by conjugation then the group action induces a group homomorphism $\phi : G \rightarrow S_8$. Since G is simple, ϕ is injective. Thus, it remains to show that $\phi(G) \leq A_8$. Let $\epsilon : S_8 \rightarrow \mathbb{Z}/2\mathbb{Z}$ be the signature map. Then we have $\epsilon \circ \phi : G \rightarrow \mathbb{Z}/2\mathbb{Z}$. Since G is simple, we have $\ker \epsilon \circ \phi = G$ or $\ker \epsilon \circ \phi = 1$. Since $|G| > 2$, we cannot have $\ker \epsilon \circ \phi = 1$. Hence, we have $\phi(G) \leq \ker \epsilon = A_8$. \square

(2) Let K be a field and A be a finite-dimensional, semisimple K -algebra. Let $Z(A)$ denote the center of A . Prove that two finitely-generated A -modules M and M' are isomorphic as A -modules if and only if they are isomorphic as $Z(A)$ -modules.

Proof. First of all, A is a finite-dimensional K -algebra implies that A is Artinian. Since A is semisimple, $A \cong \prod_{i=1}^n M_{n_i}(D_i)$ for some $n_i \in \mathbb{N}$ and D_i are division algebra over K . Thus, $Z(A) \cong \prod_{i=1}^n Z(D_i)$, which is a product of fields.

\implies : Assume $M \cong M'$. Since $Z(A)$ is a subalgebra of A , any A -module homomorphism is naturally a $Z(A)$ -module homomorphism. Thus, we have $M \cong_{Z(A)} M'$.

\impliedby : Assume $M \cong_{Z(A)} M'$ are finitely generated A -module. Therefore we have

$$M \cong \bigoplus_{i=1}^n S_i^{\oplus k_i}, \quad M' \cong \bigoplus_{i=1}^n S_i^{\oplus q_i}$$

where $S_i \cong D_i^{n_i}$ are simple A -modules. Because $Z(A)$ is a product of fields and each S_i is a $Z(D_i)$ -vector space, we have $S_i^{k_i} \cong_{Z(A)} S_i^{q_i}$ if and only if $k_i = q_i$. Thus, $M \cong_A M'$. \square

(3) Let f and g be polynomials in $\mathbb{C}[x_1, \dots, x_{24}]$. Suppose that for each value $z \in \mathbb{C}^{24}$ at which $f(z) = 0$, we also have $g(z) = 0$. Prove that f divides some power of g .

Proof. By Hilbert's Nullstellensatz, the defining ideal of $V(g)$ is $\sqrt{(g)}$. Since f vanishes on $V(g)$, we have $f \in \sqrt{(g)}$. Thus, $f \mid g^n$ for some $n \in \mathbb{Z}_{>0}$. \square

(4) Define the Jacobson radical of a ring to be the intersection of all maximal left ideals of this ring. Let $\phi : R \rightarrow S$ be a surjective morphism of rings. Prove that the image by ϕ of the Jacobson radical of R is contained in the Jacobson radical of S .

Proof. Suppose \mathfrak{m} is a maximal ideal in R . Since ϕ is surjective, $\phi(\mathfrak{m})$ is an ideal in S . If $\phi(\mathfrak{m}) \neq S$ and it is not maximal, then there exists a maximal ideal \mathfrak{a} such that $\phi(\mathfrak{m}) \subsetneq \mathfrak{a} \subsetneq S$. Then $\mathfrak{m} \subsetneq \phi^{-1}(\mathfrak{a}) \subsetneq R = \phi^{-1}(S)$ is a contradiction since \mathfrak{m} is maximal. Hence, $\phi(\mathfrak{m})$ is a maximal ideal in S . Therefore, we have $\phi(\mathfrak{m})$ is either a maximal ideal or S . Thus, $\phi(J(R)) = \phi(\bigcap_{\mathfrak{m} \subset R} \mathfrak{m}) \subseteq \bigcap_{\mathfrak{m} \subset R} \phi(\mathfrak{m}) = J(S)$. \square

(5) Construct an example (or merely prove the existence) of a 10×10 matrix over \mathbb{R} with minimal polynomial $(x+1)^2(x^4+1)$ which is not similar to a matrix over \mathbb{Q} .

Proof. The main reason is that irreducible polynomials over R has degree at most 2 since \mathbb{C} is algebraically closed and $[\mathbb{C} : \mathbb{R}] = 2$.

Note that $x^4 + 1 = (x^2 + 1)^2 - (2x^2) = (x^2 + 1 - \sqrt{2}x)(x^2 + 1 + \sqrt{2}x)$. Thus, we have

$$\left(\begin{pmatrix} 0 & -1 \\ 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & & & -1 \\ & 1 & & -2 \\ & & 1 & -1 \\ & & & 0 \\ & & & 1 & -1 \\ & & & & 1 & -2 \end{pmatrix} \right) \in \text{Mat}_{10 \times 10}(\mathbb{R})$$

is a matrix with minimal polynomial $(x + 1)^2(x^4 + 1)$ which is not similar to a matrix over \mathbb{Q} . \square

(6) Let F be a field of characteristic not 2. Show that if $f(x) = x^8 + ax^4 + bx^2 + c$ is an irreducible polynomial over F for some $a, b, c \in F$ then the Galois group of the splitting field of f is solvable.

Proof. Since $\text{char } F \neq 2$, $f'(x) \neq 0$. Because f is irreducible and $f'(x) \neq 0$, we must have $\gcd(f, f') = 1$; hence, f is separable. Let K be the splitting field of f over F . Then K/F is a Galois extension. Note that $f(x) = g(x^2)$ where $g(x) = x^4 + ax^2 + bx + c$, which is also separable. The splitting field of g is a subfield $F \subseteq E \subseteq K$, and E/F is Galois as well. Because $\text{Gal}(E/F) \leq S_4$ is solvable and $\text{Gal}(K/E) \cong (\mathbb{Z}/2)^4$ is solvable, we have $\text{Gal}(K/F)$ is solvable (any extension of solvable groups is solvable). \square