ALGEBRA QUALIFYING EXAM, JANUARY 2024

Justify all arguments completely. Every ring R is assumed to have a unit 1 € R. Reference specific
results whenever possible.

(M

Let G be a simple group of order 168. Show that G is isomorphic to a subgroup of Asg, the alter-
nating group of degree 8. Show that G is not isomorphic to a subgroup of Ag.

Proof. Note that 7 | 168 and 7 1 |Ag| = %' Hence, G £ Ag.

Since G is simple, any Sylow subgroups of G is not normal. Note that |G| = 23 -3 - 7. We
have n7; = 8 because n7 | 24 and n7 = 1 (mod 7). Let G acts on the Sylow 7-subgroups by
conjugation then the group action induces a group homomorphism ¢ : G — Sg. Since G is
simple, ¢ is injective. Thus, it remains to show that ¢(G) < Ag. Let € : Sg — Z/27 be the
signature map. Then we have e o ¢ : G — Z/2Z. Since G is simple, we have kere o ¢ = G or
kere o ¢ = 1. Since |G| > 2, we cannot have kere o ¢ = 1. Hence, we have ¢(G) < kere = Ag.

O

Let K be a field and A be a finite-dimensional, semisimple K-algebra. Let Z(A) denote the center
of A. Prove that two finitely-generated A-modules M and M’ are isomorphic as A-modules if and
only if they are isomorphic as Z(A)-modules.

Proof. First of all, A is a finite-dimensional K-algebra implies that A is Artinian. Since A is
semisimple, A = [, M,,(D;) for some n; € N and D; are division algebra over K. Thus,
Z(A) =117, Z(D;), which is a product of fields.

— : Assume M = M’. Since Z(A) is a subalgebra of A, any A-module homomorphism is
naturally a Z(A)-module homomorphism. Thus, we have M =4 M'.

<= : Assume M =4y M’ are finitely generated A-module. Therefore we have

n n
M=Psi, M =S
=1 1=1

where S; = D" are simple A-modules. Because Z(A) is a product of fields and each S; is a
Z(D;)-vector space, we have Sf“ =) 5§ if and only if k; = ;. Thus, M =4 M’ O

Let f and g be polynomials in C[x1, ..., 724]. Suppose that for each value z € C?* at which
f(z) =0, we also have g(z) = 0. Prove that f divides some power of g.

Proof. By Hilbert’s Nullstellensatz, the defining ideal of V(g) is 1/(g). Since f vanishes on V (g),
we have f € \/(g). Thus, f | g" for some n € Z~y. O

Define the Jacobson radical of a ring to be the intersection of all maximal left ideals of this ring.
Let ¢ : R — S be a surjective morphism of rings. Prove that the image by ¢ of the Jacobson
radical of R is contained in the Jacobson radical of S.

Proof. Suppose m is a maximal ideal in R. Since ¢ is surjective, ¢(m) is an ideal in S. If $(m) £ S
and it is not maximal, then there exists a maximal ideal a such that ¢(m) C a C S. Then m C
¢ 1(a) € R = ¢ 1(9) is a contradiction since m is maximal. Hence, ¢(m) is a maximal ideal
in S. Therefore, we have ¢(m) is either a maximal ideal or S. Thus, ¢(J(R)) = ¢(Nmcrm) C
Nmcre(m) = J(S). O]
Construct an example (or merely prove the existence) of a 10 x 10 matrix over R with minimal
polynomial (z 4+ 1)2(z* + 1) which is not similar to a matrix over Q.

Proof. The main reason is that irreducible polynomials over R has degree at most 2 since C is

algebraically closed and [C : R] = 2.
1



(6)

Note that z* + 1 = (22 + 1)% — (22%) = (22 + 1 — v/22)(2® + 1 + v/22). Thus, we have
0 -1
1 V2
0 -1
1 V2

-1

1 -2
1 -1

1 0

1 -1

1 -2

€ Matigx10 (R)

is a matrix with minimal polynomial (x + 1)?(2* + 1) which is not similar to a matrix over Q. [

Let F be a field of characteristic not 2. Show that if f(z) = 2® 4+ ax* + bz? + cis an irreducible
polynomial over F' for some a, b, c € F' then the Galois group of the splitting field of f is solvable.
Proof. Since char F' # 2, f'(x) # 0. Because f is irreducible and f’(x) # 0, we must have
ged(f, f') = 1; hence, f is separable. Let K be the splitting field of f over F. Then K/F is
a Galois extension. Note that f(x) = g(2?) where g(z) = x* + az? + bz + ¢, which is also
separable. The splitting field of g is a subfield F C E C K, and E//F is Galois as well. Because
Gal(E/F) < Sy is solvable and Gal(K/E) = (Z/2)* is solvable, we have Gal(K/F) is solvable

O

(any extension of solvable groups is solvable).
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