
Algebra Qualifying Exam - January 2020

(1) Classify all groups of order 75 up to isomorphism.

Proof. Let G be a group of order 75 = 3 · 52. By Sylow’s theorems, G has a normal Sylow 5-
subgroup P of order 25.
(a) Assume P ∼= Z/25Z. Because Aut(P ) has order 20, any morphism Z/3 → Aut(P ) is trivial.

Thus, G ∼= P × Z/3.
(b) Assume P ∼= Z/5Z× Z/5Z. Then Aut(P ) ∼= GL2(Z/5Z) has order 24× 20 = 3× 160. By

Sylow’s theorem, the Sylow 3-subgroups of Aut(P ) are conjugate to each other and isomor-
phic to Z/3. Therefore, any injection Z/3 → Aut(P ) give the same group structure on G.
Thus, so G ∼= Z/5× Z/5× Z/3 or (Z/5× Z/5)⋊ Z/3.

□

(2) Let G be a group acting transitively on a set X of size n > 1.
(a) If G is finite, show that there exists g ∈ G so that gx ̸= x for all x ∈ X (hint: count the

number of g such that gx = x for some x ∈ X).
Proof. By Burnside’s lemma, we have

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Since G acts transitively on X , |X/G| = 1. Also, we have X1 = X has size n > 1. Therefore
there must exist an element g such that |Xg| = 0; otherwise, the right-hand side would be
greater than 1. □

(b) Give an example to show this can fail for G infinite (Hint: consider GLn(C) with X the set
of 1-dimensional subspaces of the space of column vectors).
Proof. Let X = P1(Cn) and G = GLn(C). Then G acts transitively on Cn; hence G acts
transitively onX . Because C is algebraically closed, every matrix A ∈ GLn(C) has all eigen-
values in C. Therefore, the matrixA is at least an eigenvector v ∈ Cn and C · v ∈ X is a fixed
point of G. □

(3) Let R be an integral domain with quotient field F .
(a) If M is a maximal ideal of R, show that the localization RM of R at M naturally embeds in

F .
Proof. This follows from the universal property of localization. □

(b) Show that R = ∩MRM where the intersection is over all maximal ideals (hint: If s ∈ ∩RM

let I = {r ∈ R|rs ∈ R}. show that I is an ideal and is not contained in any maximal ideal
M ).
Proof. By (a), we can viewRM as a subring of F and take the intersection inside F . It suffices
to show that ∩MRM

R = 0. By the gluing property of modules, it is enough to show that for
any maximal ideal m, (∩MRM

R )m = 0. Because localization by M and by m are commutative
and localization is exact,

(
∩MRM

R
)m ∼=

∩M (RM )m
Rm

=
∩M (Rm)M

Rm
⊆ Rm

Rm
= 0.

□
(4) LetK be a field of characteristic 0 containing allm-th roots of unity. Let L/K be a field extension

and a ∈ L such that am ∈ K . Prove that K(a)/K is Galois with a Galois group that is cyclic of
order dividingm.

Proof. Assume ζ is a primitivem-th root of unity. Because am ∈ K andK contains allm-th root
of unity, f(x) = xm − am = (x − a)(x − aζ) · · · (x − aζm−1) ∈ K[x] is separable and splits
completely in K(a). Hence,K(a)/K is Galois.
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Ifm is the minimal positive integer such that am ∈ K then xm − am is irreducible overK and
the Galois group of K(a)/K is isomorphic to Z/mZ. If d < m and ad ∈ K , then agcd(d,m) ∈ K

and xgcd(d,m) − agcd(d,m) is irreducible over K ; hence Gal(K(a)/K) ∼= Z/ gcd(d,m)Z. □

(5) Let k be field with f, g ∈ k[x1, ..., xn]. Show that f(a1, ..., an) = 0 if and only if g(a1, ..., an) = 0
is equivalent to f and g having exactly the same (monic) irreducible factors.
Proof. Note that V (f) = V (g) iff Rad(f) = Rad(g), where V (f) is the vanishing locus of the
ideal generated by f and Rad(f) is the radical of the ideal generated by f . It suffices to show that
f and g have the same irreducible factors if and only if Rad(f) = Rad(g).

Suppose Rad(f) = Rad(g). Then f ∈ Rad(g), i.e. fn ∈ (g). Since k[x1, ..., xn] is a UFD,
irreducible elements are prime. If p | g is irreducible, then g | fn implies p | fn implies p | f . Thus,
any irreducible factor of g is an irreducible factor of f . Therefore, f and g have same irreducible
factors.

Conversely, if f and g have the same irreducible factors p1, · · · , pn, then f = afp
e1
1 · · · penn and

g = agp
d1
1 · · · pdnn for some af , ag ∈ k and ei, di ∈ Z>0. Then there exists some largeM such that

eiM > di for all i; hence, g | fM , i.e. f ∈ Rad(g) and Rad(f) ⊆ Rad(g). Similarly, one can show
that g ∈ Rad(f), and the conclusion follows. □

(6) Assume that R is a semisimple ring which is a finite-dimensional algebra over a field k, such that
for every r ∈ R, there exists a positive integer n = n(r) such that rn ∈ Z(R) the center of R.
Prove that R is commutative in the following two cases:
(a) k is finite;
(b) k = R. (hint: first show that there exists x ∈ C such that xn /∈ R, for all positive n)
Proof. Let R be as above. Then R is Artinian since it is finite dimension over k. By Wedderburn-
Artin theorem, we have a k-algebra isomorphism

R ∼= Matn1(D1)× · · ·Matnk
(Dk).

where ni ∈ Z>0 and Di are division algebra over k.
(a) Assume k is finite. Because k is finite and dimk R < ∞ implies R is finite; hence, Di’s are

finite division rings. Since any finite division ring is a field,Di’s are fields. Note that if ni > 1,
then thematrixEk

11 = E11 andE11 /∈ Di = Z(Matni(Di)) asE11E12 = E12 ̸= 0 = E12E11.
Hence, ni = 1 for all i and R ∼= D1 × · · ·Dk is commutative.

(b) Assume k = R. Then every Di is one of R,C,H(the quaternions). The same argument as in
(a) shows that ni must be 1. It remains to show thatDi ̸∼= H. Note that the center of H is R.
Consider the element x = cos 1 + i sin 1 ∈ H. Then xk = cos k+ i sin k is never in R for any
positive integer k because Zπ ∩ Z = ∅. Therefore, Di ̸∼= H for all i. Thus, R is a product of
R’s or C’s; hence R is commutative.

□
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