ALGEBRA QUALIFYING EXAM - JANUARY 2020

(1) Classify all groups of order 75 up to isomorphism.

Proof. Let G be a group of order 75 = 3 - 52. By Sylow’s theorems, G has a normal Sylow 5-
subgroup P of order 25.

(@)
(b)

Assume P =2 7,/257.. Because Aut(P) has order 20, any morphism Z/3 — Aut(P) is trivial.
Thus, G = P x Z/3.
Assume P = 7 /57, x 7/5Z. Then Aut(P) = GLy(Z/57) has order 24 x 20 = 3 x 160. By
Sylow’s theorem, the Sylow 3-subgroups of Aut(P) are conjugate to each other and isomor-
phic to Z/3. Therefore, any injection Z/3 — Aut(P) give the same group structure on G.
Thus,so G = 7Z/5 X Z/5 x Z/3 or (Z/5 x Z)5) x Z/3.

([l

(2) Let G be a group acting transitively on a set X of size n > 1.

(@)

(b)

If G is finite, show that there exists g € G so that gx # x for all x € X (hint: count the
number of g such that gr = x for some z € X).
Proof. By Burnside’s lemma, we have

1
[ X/G| = @Z\X”\-

geG
Since G acts transitively on X, | X/G| = 1. Also, we have X' = X has size n > 1. Therefore
there must exist an element g such that | X9| = 0; otherwise, the right-hand side would be
greater than 1. U

Give an example to show this can fail for G infinite (Hint: consider GL,(C) with X the set
of 1-dimensional subspaces of the space of column vectors).

Proof. Let X = P!(C") and G = GL,(C). Then G acts transitively on C"; hence G acts
transitively on X. Because C is algebraically closed, every matrix A € GL,,(C) has all eigen-
values in C. Therefore, the matrix A is at least an eigenvector v € C" and C-v € X is a fixed
point of G. U

(3) Let R be an integral domain with quotient field F.

(@)

(b)

If M is a maximal ideal of Iz, show that the localization Ry, of R at M naturally embeds in
F.

Proof. This follows from the universal property of localization. O
Show that R = Ny; Rjs where the intersection is over all maximal ideals (hint: If s € NR
let I = {r € R|rs € R}. show that I is an ideal and is not contained in any maximal ideal
M).

Proof. By (a), we can view R as a subring of F" and take the intersection inside F'. It suffices
to show that %{7}?1\4 = (. By the gluing property of modules, it is enough to show that for

any maximal ideal m, (mMigM)m = 0. Because localization by M and by m are commutative
and localization is exact,

NarBar ~ mM(RM)m _ ﬂM(Rm)M

(=% m R R =0
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(4) Let K be afield of characteristic 0 containing all m-th roots of unity. Let L/ K be a field extension
and a € L such that a™ € K. Prove that K(a)/K is Galois with a Galois group that is cyclic of
order dividing m.

Proof. Assume ( is a primitive m-th root of unity. Because ¢’ € K and K contains all m-th root
of unity, f(z) = 2™ —a™ = (z — a)(z — al) - (x — a(™™ ') € K|[z] is separable and splits
completely in K (a). Hence, K(a)/K is Galois.
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(6)

If m is the minimal positive integer such that " € K then 2™ — a™ is irreducible over K and
the Galois group of K (a)/K is isomorphic to Z/mZ. If d < m and a® € K, then a8°d(@™) ¢ K
and z8ed(dm) _ geed(dm) js jrreducible over K; hence Gal(K (a)/K) = 7/ ged(d, m)Z. O
Let k be field with f, g € k[x1, ..., zy]. Show that f(a1,...,a,) = 0if and only if g(ai, ...,a,) =0
is equivalent to f and g having exactly the same (monic) irreducible factors.

Proof. Note that V(f) = V(g) iff Rad(f) = Rad(g), where V(f) is the vanishing locus of the
ideal generated by f and Rad(f) is the radical of the ideal generated by f. It suffices to show that
f and g have the same irreducible factors if and only if Rad(f) = Rad(g).

Suppose Rad(f) = Rad(g). Then f € Rad(g), i.e. f™ € (g). Since k[z1,...,x,] is a UFD,
irreducible elements are prime. If p | g is irreducible, then g | f™ impliesp | f™ implies p | f. Thus,
any irreducible factor of g is an irreducible factor of f. Therefore, f and g have same irreducible
factors.

Conversely, if f and g have the same irreducible factors p1, - - - , pp, then f = asp{* - - - p&* and
g= agpcll1 . ~pﬁ" for some ay,ay € k and e;,d; € Z~q. Then there exists some large M such that
e;M > d; for all i; hence, g | fM,ie. f € Rad(g) and Rad(f) C Rad(g). Similarly, one can show
that g € Rad(f), and the conclusion follows. O

Assume that R is a semisimple ring which is a finite-dimensional algebra over a field k, such that
for every r € R, there exists a positive integer n = n(r) such that ™ € Z(R) the center of R.
Prove that R is commutative in the following two cases:

(a) k is finite;

(b) k£ = R. (hint: first show that there exists = € C such that 2™ ¢ R, for all positive n)

Proof. Let R be as above. Then R is Artinian since it is finite dimension over k. By Wedderburn-
Artin theorem, we have a k-algebra isomorphism

R 22 Maty, (D1) % - - - Maty, (Dj).

where n; € Z~¢ and D; are division algebra over k.

(a) Assume k is finite. Because k is finite and dimy R < oo implies R is finite; hence, D;’s are
finite division rings. Since any finite division ring is a field, D;’s are fields. Note that if n; > 1,
then the matrix Efl = Fi1and Eqq ¢ D, = Z(MatnL(Dl)) as F11E19 = Fo 75 0= FEi2F;.
Hence, n; = 1 foralliand R = Dq x --- Dy, is commutative.

(b) Assume k = R. Then every D; is one of R, C, H(the quaternions). The same argument as in
(a) shows that n; must be 1. It remains to show that D; 22 H. Note that the center of H is R.
Consider the element z = cos 1 4 isin 1 € H. Then 2* = cos k + i sin k is never in R for any
positive integer k because Zm N Z = &. Therefore, D; 2 H for all i. Thus, R is a product of
R’s or C’s; hence R is commutative.
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