(1) Classify all groups of order 495.

Proof. Assume G is a group of order $495 = 5 \times 11 \times 9$. By Sylow's theorem, we have $n_3 = 1$ or 55, $n_5 = 1$ or 11, $n_{11} = 1$ or 45. Note that we cannot have $n_11 = 45$ and $n_5 = 11$ at the same time; otherwise, there are 44 elements of order 5 and 450 elements of order 11.

- (a) Assume $n_5=1$. Then P_5 is normal. Note that in a group of order 99, both Sylow 3-subgroup and Sylow 11-subgroup are normal. Thus, $G\cong P_5\rtimes (P_3\times P_{11})$. Since $\operatorname{Aut}(P_5)=\operatorname{Aut}(\mathbb{Z}/5)$ is a group of order 4, the only possible homomorphism $P_3\times P_{11}\to\operatorname{Aut}(\mathbb{Z}/5)$ is the trivial map. Therefore, $G\cong \mathbb{Z}/5\times \mathbb{Z}/9\times \mathbb{Z}/11$ or $G\cong \mathbb{Z}/5\times \mathbb{Z}/11\times \mathbb{Z}/3\times \mathbb{Z}/3$.
- (b) Assume $n_{11}=1$ and G is nonabelian. By the same argument, we see that a group of order 45 is either $\mathbb{Z}/45$ or $\mathbb{Z}/5 \times (\mathbb{Z}/3)^2$. Let H < G be a subgroup of order 45. Note that $\operatorname{Aut}(\mathbb{Z}/11) \cong \mathbb{Z}/10$ is cyclic; hence, any nontrivial homomorphism $H \to \operatorname{Aut}(\mathbb{Z}/11)$ gives the same group structure of G. One such nontrivial homomorphism $H \to \operatorname{Aut}(P_{11}) = \operatorname{Aut}(\mathbb{Z}/11)$ is given by sending a generator of $\mathbb{Z}/5 < H$ to 4, because

$$4^5 \equiv 16^2 \times 4 \equiv 5^2 \times 4 \equiv 3 \times 4 \equiv 1 \pmod{11}.$$

If $P_3 \cong \mathbb{Z}/9$ then G has a presentation

$$G \cong \langle a, b, c \mid a^5 = b^{11} = c^9 = 1, ac = ca, ab = b^4a, bc = cb \rangle.$$

If $P_3 \cong \mathbb{Z}/3 \times \mathbb{Z}/3$, then G has a presentation

 $G \cong \langle a, b, c, d \mid a^5 = b^{11} = c^3 = d^3 = 1, ac = ca, ad = da, ab = b^4a, bc = cb, dc = cd, bd = db \rangle.$

(2) If $f(x) \in \mathbb{Q}[x]$ is irreducible and $\deg f = 5$, and has precisely 2 non-real complex roots, then if E is the splitting field of f over \mathbb{Q} , show that $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to S_5 .

Proof. See Fall 2020 Q6.

(3) If R is a ring and M is a Noetherian (left) R-module, then prove any surjective R-module homomorphism $\varphi:M\to M$ is an isomorphism.

Proof. Assume φ is not injective. Then $\ker \varphi \neq 0$. Since φ is surjective, we have an infinite strictly increasing chain of R-submodule of M

$$\ker \varphi \subsetneq \ker \varphi^2 \subsetneq \cdots$$

which contradicts to the assumption that M is Noetherian. Therefore, φ must be injective. \square

(4) If R is an Artinian ring with no non-zero nilpotent elements, then show that R is a direct sum of division rings.

Proof. Since R is Artinian, the Jacobson radical J(R) is nilpotent; every elements in J(R) is a nilpotent element. Because R has no nonzero nilpotent elements, J(R)=0. By Artin–Wedderburn theorem,

$$R \cong \operatorname{Mat}_{n_1}(D_1) \times \cdots \times \operatorname{Mat}_{n_k}(D_k)$$

where $n_i \in \mathbb{Z}_{>0}$ and D_i are divison rings. Because R has no nonzero nilpotent elements, we must have $n_1 = \cdots = n_k = 1$; hence R is isomorphic to $D_1 \times \cdots \times D_k$, a direct product of division rings. \square

(5) Let $R \subset S$ be an extension of commutative rings such that S-R is closed under multiplication. Prove that R is integrally closed in S.

Proof. Assume that R is not integrally closed in S towards contradiction. Suppose $s \in S \setminus R$ is integral over R with f(s) = 0 for some $f = t^n + a_{n-1}t^{n-1} \cdots + a_0 \in R[t]$. By rearranging the terms, we have

$$-a_0 = s(s^{n-1} + a_{n-1}s^{n-2} + \dots + a_1).$$

Since $S\setminus R$ is closed under multiplication, we must have $s^{n-1}+a_{n-1}s^{n-2}+\cdots+a_1\in R$; hence, $-a_1=s(s^{n-2}+a_{n-1}s^{n-3}+\cdots+a_2)\implies s^{n-2}+a_{n-1}s^{n-3}+\cdots+a_2\in R.$

Continue the procedure, we have $s \in R$ which contradicts to the assumption that $s \in S \setminus R$. Thus, R must be integrally closed in S.

(6) In the ring $\mathbb{C}[x,y,\frac{1}{y}]$, show that some power of x^9-3y^3+4 belongs to the ideal $(x^2-y,2x^2-xy^2)$. Proof. Let $I:=(x^2-y,2x^2-xy^2)$. By Hilbert Nullstellensatz's Theorem, the vanishing ideal of V(I) is the radical of I. Thus, to show $x^9-3y^3+4\in \sqrt{I}$ is the same as showing $x^9-3y^3+4=0$ on V(I).

Note that $C[x,y,\frac{1}{y}]\cong\mathbb{C}[x,y]_{(y)}$. Plug $x^2=y$ into $2x^2-xy^2=0$, we get y(2-xy)=0. Since $y\neq 0$, we have xy=2; hence $x^3=2$. Therefore,

$$x^9 - 3y^3 + 4 = (x^3)^3 - 3x^6 + 4 = 2^3 - 3 \times 2^2 + 4 = 8 - 12 + 4 = 0.$$