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ALGEBRA QUALIFYING EXAM NOVEMBER, 1999

Partial credit is given for partial solutions.
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=4 For p and g distinct primes show that any group of order p’q is solvable.

ﬁ\ l‘!CI 1 2. Let G be a finite Abelian group so that whenever H and K are subgroups of G of the same order then
jﬁ,ﬂ, . - H = K as groups. Describe the possible structures of G. If IGl = 2*3%.5%.7%.11-13, up to isomorphism
[ i how many possibilities are there for G?

3. Letp,, ..., p, be distinct primes in Z and set F = Q(JE.,JE, \ﬁ:) < R.

Gﬂ_ '}*; & i) Show that F is a Galois extension of Q with Gal{F/Q) = (Z2Z).
el ii) Show that F = Q(+[p, +--++/py )-

Mo e/, or F a field and R = F[x,, ..., x,] let M be a finitely generated R module. Show that there are positive
ST integers s and ¢ and an exact sequence of R modules 0 —))I§ —R* : RF M—=0.
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) J il el /ov” 5. If1is a nonzero ideal of R = C[x,, ..., x,] which is not maximal then if R/I is 2 domain, show that
" dim R/ must be infinite. — £ Ap-diven orer T ™ Lol
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6, IfR# [0] is a finite ring so that each r € R satisfies the polynomial x* = x, describe the possible
structures of R.
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Written Qualifying Exam, Algebra, Nov. 1998

Directions. Partial credit in units of 1/4 is given for partial solutions.

S/ ‘r —+Tet G be a group of order p%¢®, p, g distinct primes and a, b positive integers. Prove that,
O (, if ¢ < p and the order of g mod p exceeds b then G is solvable.

2. Let & be a finitely generated abelian group (i.e., a finitely generated Z-module).

gl t! ~af)—"li’rove that & has no elements of order p, p a prime, if and only if G®z Zp = Z} for

e YLl some positive integer r, Zp is the local ring of rational numbers with denominator
prime to p.

) Prove that G is projective if and only if there is an integer r such that G@gz H = HT

o> :
W%.,wur for all abelian groups H.

3. Let Fyn be a finite field with p™ elements, p a prime. Recall that the norm map N : Fp. is
rL defined by N(z) = IT  g(z) and the trace map is defined by 7°(z) = S, gx)
L/‘I—Q_"f" 3 yéGai;pFPn gEGalrprn

‘ J{}f’bﬁ"' é’ Determine the image of each of these maps, show that the kernel of the norm map is
T TEAC {z/g(z) : x € F}.,q € Galy, Fpn} and that the kernel of the trace map is {z — g{2} : = €

Fpn, g € Galg, Fpn }.

m,,i{«,’Let R be a subring of Clz;,...,z,] containing C and assume that the field of quotients
f\,‘A £ el of Ris C(xy,...,%,). Show that tll@re are polynomials fy,..., fr € Clz1,...,z5) such that
dCfEw, o ,.1:"] C Rifandonlyifd € I = fiClzy,..., 2]+ -+ foClz1, ..., zy]. In addition,

' show that I cannot be a maximal ideal in Clz,,..., 2,].

s ~ 0. Maschke's theorem implies that the group algebra k[G] over a field k of characteristic
( AV A=y zero is semisimple when G is afinite group. Using this fact,
) a). Determine the structure of T{S3], Sz the symmetric group on three symbols.
b). An epimorphism of groups, ¢ : G — H, induces an epimorphism & : k[G] — &[H] on
the corresponding group rings over k. Prove that if & has characteristic 0 and G is finite
then k[H] is a ring direct summand of k[G].

@L({C‘ S 6. Determine the galois group of z* — p over the rationals, p a prime, and determine all
A0 i) subfields of its splitting field which are normal over the rational numbers.
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ALGEBRA QUALIFYING EXAM MAY, 1997

Pardal credit is given for partial solutions. PRz
2/
('::4 AR o > : a1l
s ’(\,-,‘.;}: /;{ —+—Up to isomorphism, describe all group of order 495, = < i
O olor —2 Lot x*- 7€ Flx]for FgC. fFcMcCand Misa splitting field for x*- 7 over F, tind
Y & X
. GuQM/F): when F=Q; when F = Q[+7}; and when F = Q[il, with i* = -1.
Y —%?—Lct M be a finitely generated F{x] module (F a field). If every submodule of M has a

Modul € complement, describe the structure of M in terms of F[x]. (Recall that a submodule H of a
e ¥A0 module M has a complement if there is a submodule H' so that M =H @ H"

i.e. H+ H=Mand Hn H' = (0).)

PV fifw”(' = Show that some power of (x + y)(x? + y* - 2) is in the ideal of C[x.y] generated by
x* +y?and y? + yx.

% 5. LetR be a commutative Noetherian ring with no nonzero nilpotent element.
Set A = {ann [ | I is a nonzero ideal of R} and M = {maximal elements in A}. Prove that R
embeds in a direct sum of finitely many domains as follows:
&) Show that the elements of M are prime ideals i1 R.
b) For P# Q in M, show ann Q < P.
@ Show that M is finite (consider sums of ann P, for P, & M).
@ Show that the intersection of the elements in M is zero.

6, LetR be a finite dimensional algebra over the field F. Assume that for every r € R there some
g(x) = F[x], depending on », so thatr + g(r)r? = (). Determine the structure of R.
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s v
o fi . ~5TLet R be a commutative ring with 1, and let ry, ..., r, € R satisfy R = Rry + - + R,
droc S IfFM = [(ay, ..., 4,) € Rl a;r; + - + a,r, = 0}, show that M is a projective R module.
o 6. Let K be a finite Galois extension of Q with Gal(K/Q) = Ay. How many subfields
G/ i( it does K contain, what arc their dimensions over Q, and which are Galois over Q?
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ALGEBRA QUALIFYING EXAM

denote the normalizer of P in G by Ng(P).
1) Show that Ng(P) = Ng(Ng(P)).

i) If K is a normal subgroup of G and X contains P, show that G = KNg(P).

iii) If no proper subgroup of G is its own normalizer, show that the center of G is

the following properties: 1) G ®; Q = Q%
ii1) for any prime p # 7, G @z (Z/pZ) = (Z/pZL)*.

MAY, 1996

Partial credit is given for partial solutions.

~—2Up to isomorphism describe all finitely generated Abelian groups which satisfy all of

i) G @ (Z/7Z) = (Z/7Z)*% and

Let R be a left Artinian ring with Jacobson radical J(R). If R# J(R) show thatR is a
left Noetherian ring.

=+1et G be a finite group and p a prime number. Let P be a p-Sylow subgroup of G and

Determine if each of the following polynomials is irreducible, and justify your answer,
—i) x+ 1€ Q[x]. =S4l X XA and Wwe Euragiaiin

i) X" + X+ o+ X2 + Xy € F[x,....,x,] for F any field.
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