Justify all arguments completely. Reference specific results whenever possible.

- (1) Let $R=C_{an}(\mathbb{C})$ denote the ring of complex analytic functions on \mathbb{C} . We note that R is a domain. Prove one of the following statements:
 - (a) The ring R[t] of polynomials with coefficients in R is a PID.
 - (b) The ring R[t] is not a PID.
- (2) Let A be an Artinian ring, and let M be an A-module which is annihilated by all nilpotent ideals in A. Prove that M is a semisimple A-module.

Proof. Since A is Artinian, J(A) is nilpotent. Thus, M is a A/J(A)-module. Because A/J(A) is semisimple, $\bigoplus_{m \in M} A \twoheadrightarrow M \to 0$ is a quotient of semisimple modules, which is semisimple. \square

- (3) (a) Determine the radical of the ideal $I=(y^2-1,x^2-(y+1)x+1)$ in $\mathbb{C}[x,y]$. You may write your answer in any form which allows you to easily see if a given polynomial f(x,y) is in the radical or not.
 - (b) Determine if the inclusion $I \subseteq \sqrt{I}$ is an equality.

Proof. (a) Note that the radical of I is the intersection of all maximal ideals that contains I, which corresponds to the points in V(I).

First, setting $y^2-1=1$ gives $y=\pm 1$. If y=1, then $0=x^2-(y+1)x+1=(x-1)^2$. If y=-1, then $x^2+1=0$. Thus, $Y(I)=\{(1,1),(i,-1),(-i,-1)\}$. Thus,

$$\sqrt{I} = (x - i, y + 1) \cap (x - 1, y - 1) \cap (x + i, y + 1)$$
$$= (y^2 - 1, (x^2 + 1)(x - 1), (y - 1)(x^2 + 1), (x - 1)(y + 1))$$

(b) This is a strict inequality since no term in I contains a monomial of the form y but $(x-1)(y+1)=xy-y+x-1\in \sqrt{I}$ has.

(4) Classify all groups of order 50.

Proof. Since any index 2 subgroup is normal, G has a normal subgroup of order 25, which is the Sylow 5-subgroup P. Then $G \cong \mathbb{Z}/2 \ltimes_{\varphi} P$ where $\varphi : \mathbb{Z}/2 \to \operatorname{Aut}(P)$ is a group homomorphism.

(i) Assume $P\cong \mathbb{Z}/25$. If φ is trivial, then $G\cong \mathbb{Z}/50$. Because $\operatorname{Aut}(\mathbb{Z}/25)$ is abelian, any embedding of $\mathbb{Z}/2$ gives the same semidirect product; hence,

$$G \cong \langle a, b \mid a^{25} = b^2 = 1, ab = ba^{24} \rangle$$

(ii) Assume $P \cong (\mathbb{Z}/5\mathbb{Z})^2$.

Assume φ is nontrivial. Then the image of φ is an order 2 elements in $\operatorname{GL}(2,5)$, which satisfies x^2-1 . Thus, the minimal polynomial of φ is either x-1, x+1 or x^2-1 . In the first case, φ is trivial. In the last case, φ sends $-1 \in \mathbb{Z}/2$ to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, which gives $\mathbb{Z}/5 \times D_{10}$. In the

second case, φ sends $-1 \in \mathbb{Z}/2\mathbb{Z}$ to $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$, which gives

$$G \cong \langle a, b, c \mid a^5 = b^5 = c^2 = 1, ab = ba, ac = ca^4, bc = cb^4 \rangle.$$

So there are 5 groups of order 50 up to isomorphism.

- (5) Consider the polynomial $p(x)=x^{16}-\alpha x^{10}-\alpha x^6+\alpha^2$, for α non-algebraic over $\mathbb Q$. Take $F=\mathbb Q(\alpha,\zeta)$, where $\zeta=e^{2\pi i/15}$.
 - (a) Is p(x) is irreducible over F?
 - (b) Determine the Galois group Gal(K/F) for the splitting field K of p(x) over F.

1

- *Proof.* (a) We have $p(x)=x^{10}(x^6-\alpha)-\alpha(x^6-\alpha)=(x^{10}-\alpha)(x^6-\alpha)$ is not irreducible over F.
- (b) Note that roots of $x^6-\alpha$ are of the form $\sqrt[2]{\zeta^5}^i\sqrt[6]{\alpha}$ with $1\leq i\leq 6$ and roots of $x^{10}-\alpha$ are of the form $\sqrt[2]{\zeta^3}^j\sqrt[10]{\alpha}$ with $1\leq j\leq 10$. Let L be the splitting field of $x^6-\alpha$ over F. Then $L=F(\sqrt[6]{\alpha},\sqrt{\zeta^5})$, which is a degree $6\times 2=12$ extension. Because $x^6-\alpha$ is separable, L/F is Galois and $\mathrm{Gal}(L/F)\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}$ where the generators are $\sqrt{\zeta^5}\mapsto -\sqrt{\zeta^5}$ and $\sqrt[6]{\alpha}\mapsto \sqrt[6]{\alpha}\sqrt{\zeta^5}$.

Next, $K = L(\sqrt[5]{\sqrt{\alpha}}, \sqrt{\zeta^3})$ is a degree 10 extension over L. Since $x^{10} - \alpha$ is separable, K/L is Galois and $\mathrm{Gal}(K/L) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ where the generators are $\sqrt{\zeta^3} \mapsto -\sqrt{\zeta^3}$ and $\sqrt[10]{\alpha} \mapsto \sqrt[10]{\alpha} \sqrt{\zeta^3}$.

So Galois group $\operatorname{Gal}(K/F) \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/30$. (to be double-checked)

- (6) For a given group G, let G' denote the subgroup generated by the commutators $[a,b]=a^{-1}b^{-1}ab$ in G. Explicitly, $G'=\langle a^{-1}b^{-1}ab:a,b\in G\rangle\subseteq G$.
 - (a) Prove that G' is normal in G, and that G/G' is abelian.
 - (b) Show that if H is normal in G and G/H is abelian, then H contains G'.
 - (c) Prove that $S_5' = A_5$.

Proof. (1) For any $g \in G$ and $h \in G'$, we have

$$g^{-1}hg = hh^{-1}g^{-1}hg = h[h, g] \in G'.$$

Hence, $G' \triangleleft G$. Suppose $aG', bG' \in G/G'$. Then we have

$$(aG')(bG')(a^{-1}G')(b^{-1}G') = [a,b]G' = G' \Leftrightarrow abG' = baG'.$$

(2) Since G' is generated by all elements of the form $[a,b]=a^{-1}b^{-1}ab$, it suffices to show that $[a,b]\in H$ for any $a,b\in G$. Since G/H is abelian, we have

$$[a,b]H = aba^{-1}b^{-1}H = (aH)(bH)(a^{-1}H)(b^{-1}H) = H \Leftrightarrow [a,b] \in H.$$

Hence, $G' \leq H$.

(3) Notice that A_5 is the kernel of the sign map $\operatorname{sgn}: S_5 \to \mathbb{Z}/2\mathbb{Z}$. For any $\sigma, \tau \in S_5$, we have $\operatorname{sgn}(\sigma\tau\sigma^{-1}\tau^{-1})=1$ since $\mathbb{Z}/2\mathbb{Z}$ is abelian; hence, $[S_5,S_5] \le A_5$. Since $[S_5,S_5]$ is normal in $S_5,[S_5,S_5]$ is normal in A_5 . Since A_5 is simple, $[S_5,S_5]=A_5$ or $[S_5,S_5]=1$. However, we have

$$(12)(23)(12)(23) = (321) \neq 1.$$

Hence, $[S_5, S_5] = A_5$.