ALGEBRA QUALIFYING EXAM FALL 2020

- (1) Let V_A be a $\mathbb{Q}[x]$ -module that corresponds to a matrix $A \in \operatorname{Mat}_n(\mathbb{Q})$. In other words, $V_A = \mathbb{Q}^n$, and the $\mathbb{Q}[x]$ -module structure is defined by $f \cdot v = f(A)v$ for $f \in \mathbb{Q}[x], v \in \mathbb{Q}^n$. The module V_A is called cyclic if there is $v \in V$ so that $\mathbb{Q}[x] \cdot v = V_A$. The matrix A is called cyclic if V_A is cyclic.
 - (a) Prove: V_A is cyclic if and only if $Ann(V_A)$ is generated by the characteristic polynomial $\chi(A)$.
 - (b) For any matrix A there is a cyclic matrix C such that AC CA = 0.
 - *Proof.* (a) Since \mathbb{Q} is a field, $\mathbb{Q}[x]$ is a PID. Since V_A is a finite dimensional \mathbb{Q} -module, V_A is a finitely generated torsion $\mathbb{Q}[x]$ -module. By the structure theorem for finitely generated modules over a PID, we have $V_A \cong \mathbb{Q}[x]/(f_1) \oplus \cdots \oplus \mathbb{Q}[x]/(f_k)$ for some $f_i \in \mathbb{Q}[x]$ such that $f_1 \mid f_2 \mid \cdots \mid f_k$ are monic polynomials. Note that $\chi_A = f_1 \cdots f_k$ and the annihilator of V_A is generated by the minimal polynomial f_k . Therefore, V_A is cyclic if and only if k=1, in which case $Ann(V_A) = (f_1)$ is generated by the characteristic polynomial.
 - (b) No idea.
- (2) A finite dimensional algebra over a field has finitely many up to isomorphism simple left modules. *Proof.* Let A be a finite dimensional algebra over a field k. Note that any simple R-module is of the form R/\mathfrak{m} for some maximal ideal \mathfrak{m} . The claim follows that A is Artinian, which implies A has finitely many maximal ideals.
- (3) Find all pairwise non-isomorphic groups of order 147 that contain no elements of order 49. *Proof.* Let G be a group of order $147 = 3 \cdot 49$. By Sylow's theorems, G has a normal Sylow 7-subgroup P of order 49. Since G has no element of order 49, $P_7 \cong (\mathbb{Z}/7)^2$.

If G is abelian, then $G \cong P_7 \times P_3 \cong (\mathbb{Z}/7)^2 \times \mathbb{Z}/3$.

Assume that G is non-abelian. Since $\operatorname{Aut}(P_7) \cong \operatorname{GL}_2(\mathbb{Z}/7)$ is of order 7*32*9. Because Sylow subgroups are conjugate to each other, it suffices to find one Sylow 3-subgroup Q in $\mathrm{GL}_2(\mathbb{Z}/7)$. For example, $Q = \langle \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle$ is a Sylow 3-subgroup of $\operatorname{GL}_2(\mathbb{Z}/7)$. So G has the following presentation

- (1) $\langle a,b,c \mid a^7=b^7=c^3=1,\ ab=ba,\ ac=ca^2,\ bc=cb \rangle$, which is given by $\mathbb{Z}/3 \to \mathrm{GL}_2(\mathbb{Z}/7)$ where $c \mapsto \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. (2) $\langle a, b, c \mid a^7 = b^7 = c^3 = 1$, ab = ba, $ac = ca^2$, $bc = cb^4 \rangle$, which is given by $\mathbb{Z}/3 \to 0$
- $\operatorname{GL}_2(\mathbb{Z}/7)$ where $c\mapsto \begin{pmatrix} 2&0\\0&4 \end{pmatrix}$. (3) $\langle a,b,c\mid a^7=b^7=c^3=1,\ ab=ba,\ ac=ca^2,\ bc=cb^2 \rangle$, which is given by $\mathbb{Z}/3\to 0$
- $\operatorname{GL}_2(\mathbb{Z}/7)$ where $c \mapsto \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.
- (4) Prove that if for $f,g\in\mathbb{C}[x,y]$ the system of equations f=g=0 has finitely many solutions, then the algebra $\mathbb{C}[x,y]/(f,g)$ is finite dimensional.

Proof. Since $\mathbb{C}[x,y]=\mathbb{C}[x][y]$ is a UFD, we can talk about gcd of two polynomials. Let d= $\gcd(f,g)$. If $d \notin \mathbb{C}^{\times}$, then d is a non-constant polynomial, which has infinitely many solutions in \mathbb{C}^2 and contradicts to the assumption. Therefore, we can assume that $1 = \gcd(f, g)$.

View f, g as elements in $\mathbb{C}(x)[y]$. Then af + bg = 1 for some $a, b \in \mathbb{C}(x)[y]$. Let $h \in \mathbb{C}(x)$ be the least common multiple of the denominators of a and b. Then $h(af + bq) = h \in (f, g)$ is a polynomial in $\mathbb{C}[x]$. Similarly, we have $s \in (f,g)$ where s is a polynomial in $\mathbb{C}[y]$. Thus, we have a \mathbb{C} -algebra epimorphism $\mathbb{C}[x,y]/(r,s) \twoheadrightarrow \mathbb{C}[x,y]/(f,g)$ and

$$\dim_{\mathbb{C}} \mathbb{C}[x,y]/(f,g) \leq \dim_{\mathbb{C}} \mathbb{C}[x,y]/(r,s) = \deg(r) \cdot \deg(s) < \infty.$$

(5)	Show that a finitely generated projective module over a principal ideal domain is free.
	Proof. See ??. □
(6)	Show that $p(x)=x^5-4x+2$ is irreducible over $\mathbb Q$, and that it has exactly three real roots. Use
	this to show that the Galois group of $p(x)$ is S_5 . Answer the question: Is $p(x)=0$ solvable by radicals?
	<i>Proof.</i> By Eisentein's criterion, $p(x)$ is irreducible over \mathbb{Q} . It has three real roots by Intermediate Value Theorem and its derivative $p'(x) = 5x^4 - 4$ has only two real roots. Thus, complex conjugation exchange two complex roots, which is a transposition in $\operatorname{Gal}(p(x))$. Because $p(x)$ is irreducible, we have $5 \mid [\mathbb{Q}[x]/p(x): \mathbb{Q}] = \operatorname{Gal}(p(x)) $; hence, $\operatorname{Gal}(p(x)) \subseteq S_5$ contains an element of order 5 by Cauchy's theorem. Therefore, $\operatorname{Gal}(p(x))$ has a 5 -cycle. Since a 5 -cycle and
	a transposition generates S_5 , $\operatorname{Gal}(p(x)) \cong S_5$.
	Because S_5 is not solvable, $p(x)=0$ is not solvable by radicals. \Box