Fall 2012: Algebra Graduate Exam

Problem 1.

Use Sylow's theorems directly to find, up to isomorphism, all possible structures of groups of order $5 \cdot 7 \cdot 23$.

Proof. Sylow's theorems tell us that any group G must have

 r_5 Sylow 5-subgroups, r_7 Sylow 7-subgroups, and r_{23} Sylow 23-subgroups

where r_5, r_7 , and r_{23} divide $5 \cdot 7 \cdot 23$, and $r_p \equiv 1 \mod p$.

$$r_p = 1, 5, 7, 5 \cdot 7, 23, 5 \cdot 23, 7 \cdot 23, \text{ or } 5 \cdot 7 \cdot 23$$

considering the restriction on modulus, $r_5 \in \{1, 7 \cdot 23\}$, $r_7 = 1$, and $r_{23} = 1$. Let P and Q be the unique Sylow 23-subgroup and Sylow 7-subgroup respectively. Since $P \cap Q = 1$, $PQ \cong P \times Q$. Let R be a Sylow 5-subgroup.

Since $R \leq G$ (why?), and R has a complement $P \times Q$, G is a semidirect product of R by $P \times Q$, that is $G = R \ltimes (P \times Q)$.

By Rotman Lemma 7.21, there is a homomorphism

$$\theta \colon \underbrace{R \to \operatorname{Aut}(P \times Q)}_{\mathbb{Z}_5 \to \mathbb{Z}_{22} \times \mathbb{Z}_6}.$$

But since gcd(5,22) = gcd(5,6) = 1, the only homomorphism is trivial. Therefore there is only one group of order $5 \cdot 7 \cdot 23$, the abelian group

$$G \cong \mathbb{Z}_5 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_{23}$$
.

Problem 2.

Let A, B, and C be finitely generated F[x] = R modules for F a field with C torsion free. Show that $A \otimes_R C \cong B \otimes_R C$ implies that $A \cong B$. Show by example that this conclusion can fail when C is not torsion free.

Proof. (From Nicolle)

R is a PID since F is a field, so by the structure theorem for finitely generated modules over a PID,

$$A \cong T(A) \oplus R^n$$
$$B \cong T(B) \oplus R^m$$
$$C \cong R^t,$$

were T(M) denotes the torsion submodule of M. Since $A \otimes_R C \cong B \otimes_R C$, it follows that

$$(T(A) \oplus R^n) \otimes_R R^t \cong (T(B) \oplus R^m) \otimes_R R^t$$
$$(T(A) \otimes_R R^t) \oplus (R^n \otimes_R R^t) \cong (T(B) \otimes_R R^t) \oplus (R^m \otimes_R R^t)$$

Thus the free part of $A \otimes_R C$ is isomorphic to the free part of $B \otimes_R C$:

$$R^n \otimes_R R^t \cong R^m \otimes_R R^t$$
,

so n=m. Similarly, the torsion submodules of $A \otimes_R C$ and $B \otimes_R C$ are isomorphic:

$$(T(A) \otimes_R R^t) \cong (T(B) \otimes_R R^t),$$

so T(A) = T(B). Therefore,

$$A \cong T(A) \oplus R^n \cong T(B) \oplus R^m \cong B$$
,

as desired.

As a counterexample, consider $A = B \oplus \text{Ann}(C)$. Then

$$A \otimes_R C \cong B \otimes_R C \oplus \underbrace{\operatorname{Ann}(C)}_0 \otimes_R C \cong B \otimes_R C,$$

but $A \ncong B$.

Problem 3.

Working in the polynomial ring $\mathbb{C}[x,y]$, show that some power of $f(x,y)=(x+y)(x^2+y^4-2)$ is in $I=(x^3+y^2,y^3+xy)$.

Note. This is identical to the Problem 5 in the 2014 fall exam.

Proof. It is sufficient to show that f(x,y) vanishes on Var(I); by Hilbert's Nullstellensatz, this implies that $f(x,y)^m \in I$ for some $m \in \mathbb{N}$.

First note that $y^3 + xy = y(y^2 + x)$ vanishes when y = 0 or $x = -y^2$.

Case 1. Assume y = 0. Then $x^3 + y^2$ vanishes at (0,0).

Case 2. Assume $x = -y^2$. Substituting this yields $(-y^2)^3 + y^2 = y^2(-y^4 + 1)$, so the polynomial vanishes at (0,0), (-1,1), (-1,-1), (1,i), (1,-i) Checking these:

$$0^{3} + 0^{2} = 0^{3} + 0 \cdot 0 = 0$$

$$(-1)^{3} + 1^{2} = 1^{3} + (-1) \cdot 1 = 0$$

$$(-1)^{3} + (-1)^{2} = (-1)^{3} + (-1)(-1) = 0$$

$$1^{3} + i^{2} = i^{3} + 1 \cdot i = 0$$

$$1^{3} + (-i)^{2} = (-i)^{3} + 1(-i) = 0.$$

Now it is enough to check that f(x, y) vanishes on $Var(I) = \{(0, 0), (-1, 1), (-1, -1), (1, i), (1, -i)\}$:

$$f(0,0) = \underbrace{(0+0)}_{0}(0^{2}+0^{4}-2) = 0$$

$$f(-1,1) = \underbrace{(-1+1)}_{0}((-1)^{2}+1^{4}-2)$$

$$f(-1,-1) = \underbrace{(-1+(-1))}_{0}\underbrace{((-1)^{2}+(-1)^{4}-2)}_{0}$$

$$f(1,i) = \underbrace{(1+i)}_{0}\underbrace{(1^{2}+i^{4}-2)}_{0}$$

$$f(1,-i) = \underbrace{(1+(-i))}_{0}\underbrace{(1^{2}+(-i)^{4}-2)}_{0}.$$

Thus by Hilbert's Nullstellensatz, since f vanishes on Var(I), a power of f is in I.

Problem 4.

For integers n, m > 1, let $A \subseteq M_n(\mathbb{Z}_m)$ be a subring with the property that if $x \in A$ with $x^2 = 0$ then x = 0. Show that A is commutative. Is the converse true?

Proof. The idea here it to show that A is semisimple, and so by Artin-Wedderburn can be written as

$$A \cong M_{n_1}(\Delta_1) \times \ldots \times M_{n_m}(\Delta_m)$$

where Δ_i is a field because it is finite and $n_i = 1$.

The converse is false. Let A be the ring generated by a single element with n=m=2:

$$A = \left\langle \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle.$$

Then A is commutative, but $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ while $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Problem 5.

Let F be the splitting field of $f(x) = x^6 - 2$ over \mathbb{Q} . Show that $Gal(F/\mathbb{Q})$ is isomorphic to the dihedral group of order 12.

Proof. Firstly, $F=\mathbb{Q}[\sqrt[3]{2},\omega]$ where ω is a sixth root of unity. Then

$$[\mathbb{Q}[\sqrt[3]{2}] : \mathbb{Q}] = 6, \text{ and}$$
$$[F : \mathbb{Q}[\sqrt[3]{2}]] = \varphi(6) = 2,$$

so $[F:\mathbb{Q}]=[F:\mathbb{Q}[\sqrt[3]{2}]]\cdot[\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}]=12$ and $\mathrm{Gal}(F/\mathbb{Q})=12$. Now consider the automorphisms

$$\tau: \begin{cases} \omega \mapsto \overline{\omega} \\ \sqrt[3]{2} \mapsto \sqrt[3]{2} \end{cases} \quad \text{and} \quad \sigma: \begin{cases} \omega \mapsto \omega \\ \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \end{cases}.$$

Now τ is of order 2 and σ is of order 6, and the dihedral relation is satisfied:

$$\sigma \tau \sigma \tau(\omega) = \sigma \tau \sigma(\overline{\omega}) = \sigma \tau(\overline{\omega}) = \sigma(\omega) = \omega$$

$$\sigma \tau \sigma \tau(\sqrt[3]{2}) = \sigma \tau \sigma(\sqrt[3]{2}) = \sigma \tau(\omega\sqrt[3]{2}) = \sigma(\overline{\omega}\sqrt[3]{2}) = \underbrace{\overline{\omega}\omega}_{1}\sqrt[3]{2} = \sqrt[3]{2}.$$

Problem 6.

Given that all groups of order 12 are solvable, show that any group of order $2^2 \cdot 3 \cdot 7^2$ is solvable.

Proof. Let r_p denote the number of Sylow p-subgroups of G. Sylows theorems state that r_p divides $2^2 \cdot 3 \cdot 7^2$, so

$$r_2 \in \{1, 3, 7, 3 \cdot 7, 7^2, 3 \cdot 7^2\}$$

$$r_3 \in \{1, 2, 2^2, 7, 2 \cdot 7, 2^2 \cdot 7, 7^2, 2 \cdot 7^2, 2^2 \cdot 7^2\}$$

$$r_7 \in \{1, 2, 2^2, 3, 2 \cdot 3, 2^2 \cdot 3\}$$

also $r_p \equiv 1 \mod p$, so

$$r_2 \in \{1, 3, 7, 3 \cdot 7, 7^2, 3 \cdot 7^2\}$$

$$r_3 \in \{1, 2^2, 7, 2^2 \cdot 7, 7^2, 2^2 \cdot 7^2\}$$

$$r_7 = 1$$

This means that there is a unique—and thus normal—Sylow 7-subgroup, call it $N \cong \mathbb{Z}_7$. Therefore $G \cong N \rtimes K$ where K is a subgroup of order 12.

Now a group is solvable if it has a normal series whose factor groups are cyclic of prime order. Since K is solvable, it has a normal series

$$K = K_0 \le K_1 \le K_2 \le \ldots \le K_n = 1.$$

where K_i/K_{i+1} is a cyclic group of prime order. Moreover, since N is normal, NK_{i+1} is a subgroup of NK_i . Thus

$$G = NK_0 \le NK_1 \le NK_2 \le \dots \le \underbrace{NK_n}_{N} \le 1$$

is a normal series of G where $NK_i/NK_{i+1}\cong K_i/K_{i+1}$ is a cyclic group of prime order for $i\in\{0,1,...,n-1\}$, and $N/1\cong N\cong \mathbb{Z}_7$ is a cyclic group of prime order. Therefore G is solvable.