

Algebra Qualifying Exam September 2002

Partial credit is given for partial solutions

1. Let k be a field and let S_n act on the polynomial ring $k[X_1, \ldots, X_n]$ by permuting the variables, i.e. $\sigma \cdot f = f^{\sigma}$ where

$$f^{\sigma}(X_1,\ldots,X_n)=f(X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

Show that for any given f, the number of distinct polynomials of the form f^{σ} is a divisor of n!.

2. Show that there are exactly 2 groups of order $11 \cdot 43^2$.

3. Let $f(X) = X^3 - X - 1 \in \mathbb{Q}[X]$. Find the splitting field K of f over \mathbb{Q} , the Galois group of the extension $\mathbb{Q} \subseteq K$ and give the number of subfields of K of each degree.

4. Let k be an algebraically closed field, and let $R = k[X_1, \ldots, X_n]$.

a) Show that if p is any prime ideal of R, then p is an intersection of maximal ideals.

b) If n=2, show that the ideal $\mathfrak{p}=(X_1+X_2)$ is prime and describe all maximal ideals \mathfrak{m} such that $\mathfrak{p}\subseteq\mathfrak{m}$.

5. Let R be a commutative algebra over the field k, and $A_1, \ldots A_t \in M_n(R)$ be $n \times n$ -matrices with entries in R. Show that there exists a k-subalgebra $S \subseteq M_n(R)$ containing A_i , $1 \le i \le t$, such that S is (left) noetherian. (hint: Try to find a subalgebra $R_0 \subseteq R$ such that $S = M_n(R_0)$.)

6. Let R be a finite ring. Show that if $x, y \in R$ satisfy xy = 1, then they also satisfy yx = 1.

(hint: First consider the case R is semi-simple.)