

Last Name: _____

First Name: _____

ID#: _____

Signature: _____

You should try at least three problems; you may try all four.

1. Let X_1, X_2, \dots, X_n be a sample of independent, identically distributed random variables with density f and distribution function F . Let $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ be the ordered sequence of those variables. For $i < j$ find the joint density of $(X_{(i)}, X_{(j)})$.

2. Let N be a Poisson random variable with parameter λ . Let $Y = \sum_{i=1}^N X_i$, where X_i are independent, identically distributed, non-negative integer valued random variables with finite mean. Show that for any function g (such that the expectations exist) we have

$$E[Yg(Y)] = \lambda E[X_0g(Y + X_0)].$$

3. A stick is broken in two pieces, uniformly at random. Let X denote the ratio of the lengths of the shorter to the longer piece. Find the mean and the variance of X .

4. The number of the electrons that hit the plate is Poisson with parameter $\lambda_1 = 2$. Every impact produces independently a number of secondary electrons that is Poisson with parameter $\lambda_2 = 1$. a) Find the moment generating function of the total number of secondary electrons; b) Find the variance of that number.