

MATH 505a QUALIFYING EXAM
January 27, 2004

You should try at least three problems; you may try all four.

Problem 1. Consider four points, 1,2,3 and 4. For each two points, there is a link between them with probability p , and no link with probability $1 - p$, independently of other points. What is the probability that there is a path of connected links between points 1 and 2?

Problem 2. Let X be a non-negative random variable with finite expectation. Show that

$$\sum_{i=1}^{\infty} P(X \geq i) \leq E[X] < 1 + \sum_{i=1}^{\infty} P(X \geq i).$$

Problem 3. Let X and Y be random variables with means equal to zero, variances equal to one, and correlation coefficient ρ . Show that

$$\left(E[\sqrt{\max(X^2, Y^2)}] \right)^2 \leq 1 + \sqrt{1 - \rho^2} .$$

Hint: First show that $\max(x, y) = (x + y + |x - y|)/2$.

Problem 4. Let $\phi(t)$ be a characteristic function of a random variable X .

- a) Assume $\phi(t) = e^{iat}$, $t \in (-\infty, \infty)$. Show that \mathbf{P} -a.s. $X = a$.
- b) Assume that $\phi(2\pi) = 1$. Show that

$$\sum_{k=-\infty}^{\infty} P(X = k) = 1.$$