

MATH 505A QUALIFYING EXAM
FEBRUARY 12, 2002

You should try at least 3 problems; you may try all 4.

- (1) Let X_1, X_2, \dots be iid with characteristic function $\varphi(t) = e^{-|t|^\alpha}$, where $0 < \alpha < 2$.
 - (a) Show that $\frac{X_1 + \dots + X_n}{n^{1/\alpha}}$ has the same distribution as X_1 .
 - (b) Show that $\text{var}(X_1) = \infty$. HINT: Use (a).
 - (c) Suppose $\alpha < 1$. Show that the weak law of large numbers does not hold, that is, there is no constant μ such that $\frac{X_1 + \dots + X_n}{n} \rightarrow \mu$ in probability.
- (2) The Geophysics building at the University of Northern California is scheduled to be seismically reinforced. The reinforcement will occur at a random time uniformly distributed in the next 3 years. Suppose that during any fixed time interval of length t , the number of major earthquakes is Poisson with mean λt . Find the probability that no major earthquake occurs before the reinforcement of the Geophysics building.
- (3) A worm farm operates as follows. Let Z_n be the number of worms at the end of month n , with $Z_0 = 1$. Each month, each worm present at the start of the month dies and is replaced by a $\text{Binomial}(2, p)$ number of offspring; these numbers of offspring are independent from one worm to another. In addition, with probability r the worm farmer buys one new worm during the month and adds it to the farm, independently of what his current worms are doing. (In other words, he adds a $\text{Bernoulli}(r)$ number of worms.)
 - (a) Let $G_n(s)$ be the generating function of Z_n . Find an equation relating G_{n+1} to G_n .
 - (b) Suppose $p = r$. Find an explicit formula for $G_2(s)$.
- (4) 8 people, including 4 members of the Smith family and 4 members of the Jones family, divide themselves at random (meaning all outcomes are equally likely) into 4 pairs of partners, to play chess. Let N be the number of Smiths whose partners are also Smiths. Find the mean and variance of N . HINT: One approach is to use indicators.