

Math 505a Qualifying Exam
Fall 2002

You should try at least 3 problems; you may try all 4.

Problem 1.

An inefficient secretary places n different letters into n differently addressed envelopes at random.

- (i) Find the expected number of letters arriving at the proper destination.
- (ii) Find the probability that at least one letter will arrive at the proper destination.

Problem 2. Let a_n be the probability that n Bernoulli trials with success probability p result in an even number of successes.

- a) Find a relation between a_n and a_{n-1} .
- b) Use (a) to calculate a_n .

Problem 3.

If U is uniform on $(0, 2\pi)$ and Z , independent of U , is exponential with mean 1, show that X and Y , defined by

$$X = \sqrt{2Z} \cos U, \quad Y = \sqrt{2Z} \sin U$$

are independent standard normal random variables.

Problem 4.

Let A_n , $n = 1, 2, \dots$, be a sequence of events (not necessarily independent) such that

- a) $\sum_{n=1}^{\infty} P(A_n) = \infty$ and
- b) $P(A_n \cap A_m) \leq P(A_n)P(A_m) \quad \forall n \neq m$.

True or false: $P\{A_n \text{ i.o.}\} = 1$. Explain. HINT: Consider the mean and variance of $\sum_{i=1}^n I_{A_i}$, where I_A denotes the indicator function of the event A . Also, "i.o." means "infinitely often."