Chemistry 524 Inorganic Materials Chemistry

Prototypical Structures

Rock Salt (NaCl) has two interpenetrated *fcc* lattices (AX)

*Fm*3*m, a* = 5.6573Å

Atom	X	У	z
Na	0.00	0.00	0.00
Cl	0.50	0.50	0.50

Rock Salt (NaCl) has two interpenetrated *fcc* lattices (AX)

The rock salt structure is a dense network of edge-sharing octahedrally coordinated cations

The rock salt structure is a dense network of edge-sharing octahedrally coordinated cations

Orienting in the correct fashion we can start to see the potential for a layered structure

The rock salt structure is a dense network of edge-sharing octahedrally coordinated cations

Orienting in the correct fashion we can start to see the potential for a layered structure

The structure of LiCoO₂ is formed by ordering the site occupancy of Li and Co between the layers

Interestingly, LiNiO₂ has a similar structure, but Ni²⁺ and Li⁺ have similar ionic radii, thus there is substantial mixing between the Li and Ni layers

LiCoO₂ has "brucite"-like layers of edge-sharing octahedra

Carbon and Silicon both adopt the diamond structure

Atom	X	У	Z
С	0.00	0.00	0.00

Carbon and Silicon both adopt the diamond structure

If there are different atoms, diamond becomes zinc blende

ZnS *F*43*m, a* = 5.4090Å

Atom	x	У	z
S	0.00	0.00	0.00
Zn	0.25	0.25	0.25

Stereographic projection of zinc blende

Wurtzite and Zinc Blende differ in stacking sequence

Zinc blende has a cubic unit cell with an fcc lattice of anions...

Thus the anions form a cubically close packed network with half of the tetrahedral interstitials containing a different cation

The principle difference in the wurtzite structure is that the anionic lattice is hexagonally close packed

The wurtzite unit cell is hexanal (hcp oxygen)

P63mc, a = 3.2499, c = 5.2066

Atom	x	У	z
S	0.3333	0.66667	0.00
Zn	0.3333	0.6667	0.3333+δ

The fluorite structure has general composition AX₂

Many very important engineering materials adopt the fluorite structure – CeO₂, ZrO₂, UO₂

CeO₂ is an oxygen ion conductor commonly used in oxygen sensors and fuel cell membranes

Y:ZrO₂ (commonly called yttria stabilized zirconia) is a widely used structural material due to its exceptionally high hardness as well as a thermal barrier coating due to its low thermal conductivity

The fluorite has general composition AX₂

The fluorite has general composition AX₂

Looking at the polyhedral connectivity of the cations shows an unusual coordination environment compared to the octahedral and tetrahedral sites we have previously seen

The fluorite has general composition AX₂

Looking at the polyhedral connectivity of the cations shows an unusual coordination environment compared to the octahedral and tetrahedral sites we have previously seen

Easier to understand the structure as a cubic close packing of the A cations with all of the tetrahedral interstitials occupied by the anions!

You should know how to draw these structures in projection

Al₂O₃, Cr₂O₃, and Fe₂O₃ adopt the corundum structure

The oxide ions in corundum form a hexagonal close packed lattice (along the *c*-direction). 2/3 of the octahedral sites are occupied

Al_2O_3 , Cr_2O_3 , and Fe_2O_3 adopt the corundum structure

USC University of Southern California

Two variants of ordered corundum exist

Fe and Ti form alternating layers along the *c*-axis to form ilmenite FeTiO₃

LiNbO₃ forms another ordered variant of corundum

Both rutile and anatase have the composition AX₂

Anatase proves more efficient at hydrogen production, but both structures are very important in the physics and chemistry of TiO₂

The perovskite structure has the formula ABX₃

Functional properties include:

- High-*T_c* cuprate superconductors
- Colossal Magneto-Resistance (La,SrMnO₃)
- Fast ion conduction (Li⁺, O²⁻),
 batteries, fuel cells
- Mixed electronic/ionic conduction, fuel cells
- Oxidation/reduction catalysts
- Ferroelectric / piezoelectric ceramics (BaTiO₃, Pb(ZrTi)O₃)
- Important mineral structure in lower mantle (MgSiO₃)
- Frequency filters for wireless communications : Ba(Zn_{1/3}Ta_{2/3})O₃

USC University of Southern California

Perovskite in stereographic projection

Bear in mind this is the projection for a perfectly symmetric and undistorted perovksite!

The precise details of the structural distortions are extremely rich and continue to be studied quite actively

Perovskites allow for extremely good orbital overlap

The Goldschmidt Tolerance factor predicts distortion

Goldschmidt Tolerance Factor:

$$a = 2(r_B + r_X) = \sqrt{2}(r_A + r_X)$$

$$t = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)}$$

Goldschmidt tolerance factor (t)	Structure	Explanation	Example
>1	Hexagonal	A ion too big or B ion too small.	•BaNiO ₃
0.9-1	Cubic	A and B ions have ideal size.	•SrTiO ₃ •BaTiO ₃
0.71 - 0.9	Orthorhombic/ Rhombohedral	A ions too small to fit into B ion interstices.	•GdFeO ₃ •CaTiO ₃
<0.71	Different structures	A ions and B have similar ionic radii.	•Ilmenite

If the radii are not well matched, perovskites distort!

ortho-CaMnO₃

BaNiO₃

Glazer notation is shorthand to describe octahedral tilting

The tilt system is described by specifying the rotation about each of the cartesian axes

a ⁰ a ⁰ a ⁰	a+a+a+	<i>a⁺a⁻c⁺</i>

Undistorted system

Rotation is identical in all directions Very complicated tilting pattern

The letter denotes the RELATIVE magnitude of the rotation around the xyz axes

The superscript denotes the RELATIVE rotation with respect to other axes

Patrick Woodward (THE Ohio State) is the leading authority on all things perovskites

Perovskites allow us to tune properties through composition

Careful! Cl doping in $CH_3NH_3PbI_{3-x}Cl_x$ is more about processing than bonding

Walsh et al APL Mat. 1, 042111 (2013);

Walsh et al. Mater. Horiz., 2, 228 (2015)

ABX₃ composition gives us many knobs to turn

Walsh et al. J. Phys. Chem. C 2015, 119, 5755-5760

Ruddleson-Popper phases – $(AO)(ABX_3)_n$

n=2 n=1 $n=\infty$

n = 3

Many useful materials adopt the spinel structure!

The spinel structure contains a cubically close packed layer of oxygen anions.

Only half of the octahedral sites and one eigth of the tetrahedral sites are fully occupied

The A and B sites can both accommodate transition metals

Spinel structure – AB_2X_4

A-sublattice

The B-sublattice contains a Kagome net – very frustrated

The A-sublattice is actually just a diamond net

Olivine is directly analogous to spinels – B_2AO_4

Contains *hcp* layers of oxygen rather than *ccp*

Spinels contain two transition metals on the A or B site, whereas olivine usually contains a main group element like P, S, or Si on the A site.

LiFePO₄ is the prototypical example of the olivine structure

The garnet structure is exceptionally rich $- \{R_3\}[M_2](XO_4)_3$

MO₆ octahedra share corners with XO₄ tetrahedra to form a 3D network

Larger R ions sit in an 8coordinate position

Garnets – particularly {Y₃}[Al₂](Al₃)O₁₂ (YAG) – are extensively used in phosphors since the Y site can be substituted with other rare earth elements

Garnets are a "fruit fly" for magnetism, complex structure

 $R_3 B_2 (AO_4)_3$

Most commonly studied for the triangular lattice on R site

 $Gd_3Ga_2(GaO_4)_3$ is an archetype for magnetic frustration

Garnets are not close-packed in the traditional sense

When viewed down the (111) axis, four symmetry-related rods consisting of alternating octahedral and trigonal prismatic sites (face of the rare-earth polyhedra) can be seen.

These rods, bound together by the tetrahedral site, form a network of close-packed rods as described by O'Keefe and Andersson

O'Keefe and Andersson Acta Cryst A 33 914 (1977)

Garnet lattice composed of a network of close-packed rods

When viewed down the (111) axis, four symmetry-related rods consisting of alternating octahedral and trigonal prismatic sites (face of the rare-earth polyhedra) can be seen.

These rods, bound together by the tetrahedral site, form a network of close-packed rods as described by O'Keefe and Andersson

Zeier, Melot et al. ACS Appl. Mater. Interfaces 6, 10900–10907, (2014)

