Algebra Qualifying Exam - Fall 2024

- 1. Show that the Galois group of the polynomial $f(x) = x^5 21x^2 + 6$ over \mathbb{Q} is isomorphic to S_5 . (Hint: show that the Galois group contains a 5-cycle and a transposition.)
- 2. Assume R is a Noetherian commutative unital ring and M is a finitely generated R-module. Prove that there exist an integer n, an increasing sequence of submodules

$$\{0\} = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

and prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ together with *R*-module isomorphisms $M_i/M_{i-1} \cong R/\mathfrak{p}_i, i \ge 1$.

3. Consider the subgroup of $GL_2(\mathbb{R})$ (i.e., the group of invertible 2×2 -matrices with real number entries) consisting of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}.$$

Show that this group is solvable. Is this group nilpotent? Prove or disprove.

- 4. Let R be an Artinian ring and $J \subseteq R$ be the Jacobson radical in R. Suppose that $J^2 = J$. Prove that R is isomorphic to a finite product of matrix rings $A \cong \prod_{i=1}^{m} M_{n_i}(D_i)$, where each D_i is a division ring.
- 5. Suppose R is a commutative ring. Recall that if S ⊂ R is a multiplicatively closed subset, then the localization R[S⁻¹] is the collection of all formal fractions ^r/_s modulo the equivalence relation ^r/_s = ^{r'}/_{s'} if ∃s'' ∈ S such that s''(rs' - sr') = 0. The function r → ^r/₁ yields a well-defined function π : R → R[S⁻¹].
 - (a) Show that π is an isomorphism if and only if $S \subset R^{\times}$ (the multiplicative group of units in R).
 - (b) Suppose R is a finite ring. Show that π need not be an isomorphism, but it is always surjective.
- 6. (a) For an ideal I ⊆ C[x₁, x₂] write V(I) ⊂ A²_C for the variety of the ideal I, i.e., the collection of x ∈ C² such that f(x) = 0 for all f ∈ I. Likewise, write I(V) for the vanishing ideal of a subset V ⊂ C², i.e., the collection of all f ∈ C[x₁, x₂] such that f(x) = 0 for all x ∈ V. Provide an explicit example of an ideal I for which V(I) is the union of two distinct lines in C² and for which I ≠ I(V(I)) (by a line, we mean the vanishing locus of a linear function a₁x₁ + a₂x₂ + a₃, where at least one of a₁, a₂ is non-zero.)
 - (b) Provide an example of a 4-dimensional commutative Q-algebra A which admits no ring homomorphism A → Q.