Numerical Analysis Preliminary Examination Fall 2024

August 12, 2024

Problem 1.

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible with non-zero elements along its diagonal and write A = L+Uwhere L is lower triangular and U is upper triangular with zeros along the diagonal. Recall the Gauss-Seidel method for finding the solution of Ax = b is

$$Lx_k = b - Ux_{k-1}.$$

Let x^* be the exact solution to Ax = b.

(a) Let $e_k = x_k - x^*$ be the error in the k'th iterate. Show there is a matrix T such that

$$e_k = T^k e_0$$

and identify the matrix T in terms of L and U.

- (b) Show the method converges for all initial vectors x_0 if and only if $\rho(T) < 1$ (where $\rho(T)$ is the spectral radius of T).
- (c) Suppose there is exactly one eigenvalue λ of T for which $|\lambda| > 1$. Explain why the Gauss-Seidel method diverges for essentially all initial vectors, x_0 .
- (d) Suppose A is diagonally dominant by rows. Show the Gauss-Seidel method converges for all initial vectors x_0 . *Hint: Write* det $(T \lambda I)$ in terms of det $(U + \lambda L)$. What can you conclude about det $(T \lambda I)$ when $|\lambda| \ge 1$?

Problem 2.

Let A, T be linear maps from C^n into C^m and B = A + T. Denote the pseudo-inverse of A by A^{\dagger} , the adjoint of A by A^H , the column space of A by C(A) and the nullspace of A by N(A). We would like to look into the sensitivity of A^{\dagger} when A is perturbed by T.

(a) Let α, β be nonzero numbers and let A, T be as follows

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 0 & \epsilon \\ \epsilon & 0 \end{pmatrix}$$

Compute $||T||_2$, rank(A), rank(B), $B^{\dagger} - A^{\dagger}$ and show that $||B^{\dagger} - A^{\dagger}||_2$ can be made arbitrarily large by choosing ϵ appropriately.

(b) Show that if rank(B) = rank(A) and $||T||_2 < \frac{1}{||A^{\dagger}||_2}$ then

$$||(A+T)^{\dagger}||_{2} \le \frac{||A^{\dagger}||_{2}}{1-||A^{\dagger}||_{2}||T||_{2}}$$

Hint: Use the fact that if rank(A) = rank(B) = r and the singular values of A are $\sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_r(A) > 0$ then $\sigma_r(A+T) \ge \sigma_r(A) - \sigma_1(T)$. You may use this fact without proving it.

(c) In the case that rank(B) = rank(A) we can also show that:

$$||B^{\dagger} - A^{\dagger}||_{2} \le \sqrt{2} ||B^{\dagger}||_{2} ||A^{\dagger}||_{2} ||B - A||_{2}$$

Show the following decomposition which is central in the proof of this result

$$B^{\dagger} - A^{\dagger} = P_{C(B^{H})}(B^{\dagger} - A^{\dagger})P_{C(A)} + B^{\dagger}P_{N(A^{H})} - P_{N(B)}A^{\dagger}$$

Where the orthogonal projection onto a subspace X is denoted by P_X .

Problem 3.

Let $A, Q \in \mathbb{R}^{n \times n}$, with Q positive semi-definite symmetric, let $R \in \mathbb{R}^{m \times m}$ with R positive definite symmetric, and let $B \in \mathbb{R}^{n \times m}$. Set $Z = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \in \mathbb{R}^{2n \times 2n}$.

- (a) Show that the characteristic polynomial of Z is in fact a polynomial in s^2 and therefore if $\lambda \in \sigma(Z)$ then $-\lambda \in \sigma(Z)$. (Hint: Use the elementary properties of the determinant to show that det(-sI - Z) = det(sI - Z)).
- (b) Let $Z = \hat{W}\hat{J}\hat{W}^{-1}$ denote a complex Jordan decomposition of Z and partition \hat{W} and \hat{J} into $n \times n$ blocks with $\hat{J} = \begin{pmatrix} \hat{J}_{11} & \hat{J}_{12} \\ 0 & \hat{J}_{22} \end{pmatrix}$ and $\hat{W} = \begin{pmatrix} \hat{W}_{11} & \hat{W}_{12} \\ \hat{W}_{21} & \hat{W}_{22} \end{pmatrix}$. Find a $2n \times 2n$ block matrix with blocks of size $n \times n$, $W = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}$, such that $Z = WJW^{-1}$ with $J = \begin{pmatrix} J_{11} & 0 \\ J_{21} & J_{22} \end{pmatrix} = \begin{pmatrix} \hat{J}_{22} & 0 \\ \hat{J}_{12} & \hat{J}_{11} \end{pmatrix}$.
- (c) If W_{12} is invertible, let $P = W_{22}W_{12}^{-1}$ and show that P is a solution to the matrix algebraic Riccati equation (ARE) $PA + A^TP PBR^{-1}B^TP + Q = 0$, and show that if the ARE has a unique solution, then P must be symmetric (Hint: Recall that ZW = WJ).
- (d) With P as in part (c), show that the matrix $A BR^{-1}B^TP$ is similar to J_{22} and that the (generalized) eigenvectors of $A BR^{-1}B^TP$ are the columns of the matrix W_{12} .
- (e) If Z is in fact diagonalizable (this is really not necessary) with no eigenvalues on the imaginary axis, show that there is a choice for the Jordan decomposition of Z (i.e. of \hat{W} and \hat{J}) so that the matrix $A BR^{-1}B^TP$ is a Hurwitz or stability matrix (a matrix having all its eigenvalues in the left half plane).