Geometry and Topology Graduate Exam Fall 2023

Solve as many problems as you can. Partial credit will be given to partial solutions.

Problem 1. Show that for any $n \geq 1$, the subset $SL_n(\mathbb{R}) \subset \mathbb{R}^{n \times n}$ consisting of matrices of determinant 1 is a smooth submanifold.

Problem 2. Let $\alpha \in \Omega^2(\mathbb{R}^3)$ be the 2-form defined by

$$\alpha = (x^3 + y + z) \,\mathrm{d}y \wedge \mathrm{d}z - (x + y^3 + z) \,\mathrm{d}x \wedge \mathrm{d}z + (x + y + z^3) \,\mathrm{d}x \wedge \mathrm{d}y.$$

Compute the integral

$$\int_{\mathbf{S}^2} \alpha$$

over the unit sphere $S^2 \subset \mathbb{R}^3$ (endowed with a fixed orientation of your choosing). *Hint: Recall that, for the spherical coordinates* (r, θ, φ) with $x = r \cos \theta \cos \varphi$, $y = r \sin \theta \cos \varphi$, and $z = r \sin \varphi$, we have $dx \wedge dy \wedge dz = r^2 \cos \varphi \, dr \wedge d\theta \wedge d\varphi$. **Problem 3.** Let X be a manifold with $\pi_2(X, x) = 0$ for all $x \in X$. Is it necessarily the case that $H_2(X; \mathbb{Z}) = 0$ as well? Explain.

Problem 4. What are the integral homology groups of $S^1 \vee S^2 \vee S^3 \vee S^4$?

Problem 5. Let V be a smooth vector-field on a closed manifold M and let $\varphi : \mathbb{R} \times M \to M$ be the flow generated by V. Consider the quotient space X by the flow, i.e.

 $X = M/\sim$ where $p \sim q$ if and only if $q = \varphi(t, p)$ for some time t.

Prove or give a counter-example to the following statements.

(a) X is compact.

(b) X is a closed manifold.

Problem 6. Give an example of a covering space $X \to Y$ which is not a regular covering space.

Problem 7. Show that the Cantor set does not admit a CW complex structure.