## Algebra qualifying exam, August 2023

Justify all arguments completely. Reference specific results whenever possible.

1. Let $R=C_{\text {an }}(\mathbb{C})$ denote the ring of complex analytic functions on $\mathbb{C}$. We note that $R$ is a domain. Prove one of the following statements:
(a) The ring $R[t]$ of polynomials with coefficients in $R$ is a PID.
(b) The ring $R[t]$ is not a PID.
2. Let $A$ be an Artinian ring, and let $M$ be an $A$-module which is annihilated by all nilpotent ideals in $A$. Prove that $M$ is a semisimple $A$-module.
3. (i) Determine the radical of the ideal

$$
I=\left(y^{2}-1, x^{2}-(y+1) x+1\right)
$$

in $\mathbb{C}[x, y]$. You may write your answer in any form which allows you to easily see if a given polynomial $f(x, y)$ is in the radical or not.
(ii) Determine if the inclusion $I \subseteq \sqrt{I}$ is an equality.
4. Classify all groups of order 50 .
5. Consider the polynomial $p(x)=x^{16}-\alpha x^{10}-\alpha x^{6}+\alpha^{2}$, for $\alpha$ non-algebraic over $\mathbb{Q}$. Take $F=\mathbb{Q}(\alpha, \zeta)$, where $\zeta=e^{2 \pi i / 15}$.
(i) Is $p(x)$ is irreducible over $F$ ?
(ii) Determine the Galois group $\operatorname{Gal}(K / F)$ for the splitting field $K$ of $p(x)$ over $F$.
6. For a given group $G$, let $G^{\prime}$ denote the subgroup generated by the commutators $[a, b]=a^{-1} b^{-1} a b$ in $G$. Explicitly,

$$
G^{\prime}=\left\langle a^{-1} b^{-1} a b: a, b \in G\right\rangle \subseteq G .
$$

(i) Prove that $G^{\prime}$ is normal in $G$, and that $G / G^{\prime}$ is abelian.
(ii) Show that if $H$ is normal in $G$ and $G / H$ is abelian, then $H$ contains $G^{\prime}$.
(iii) Prove that $S_{5}^{\prime}=A_{5}$.

