PDE Screening exam Spring 2024

December 10, 2023

Problem 1. Find a classical solution u(x, y) of the equation

$$(\partial_x u)^2 - x^2 = (\partial_y u)^2 - y^2$$

in \mathbb{R}^2 satisfying the boundary condition $u(y, y) = y^2$.

Problem 2. Let U be open and bounded in \mathbb{R}^n . Suppose u and Δu are continuous in U, and u satisfies that

$$\begin{cases} \Delta u = u^4 & \text{in } U, \\ u = 0 & \text{on } \partial U. \end{cases}$$

- (1) If $u \ge 0$ in \overline{U} , prove that $u \equiv 0$.
- (2) If the condition $u \ge 0$ in \overline{U} is absent, what can you say about u(x)?

Problem 3. Let $P, Q, R, S \in \mathbb{R} \times \mathbb{R}^+$ be consecutive vertices of a rectangle with sides parallel to the lines x + t = 0 and x - t = 0, respectively.

(1) Let $u = u(x,t) \in C^2(\mathbb{R} \times \mathbb{R}^+)$ be a solution to the wave equation in $\mathbb{R} \times \mathbb{R}^+$, show that

$$u(P) + u(R) = u(Q) + u(S).$$

(2) Let $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ be given functions. Find a solution to the wave equation in \mathbb{R}^2 such that

$$u(t-1,t) = \alpha(t), \quad u(5-t,t) = \beta(t).$$