PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Spring 2023

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Consider the equation

$$
u_{x}^{2}(x, y)+2 u_{y}^{2}(x, y)=x^{2}+2 y^{2}
$$

(a) Find at least one classical solution to this equation in \mathbb{R}^{2} such that $u(x, x)=x^{2}$.
(b) Is the problem from (a) uniquely solvable?
2. Let u be harmonic in the domain $U=B(0,4)$ in \mathbb{R}^{2}.
(a) Show that if u is bounded then

$$
\sup _{x \in U}(4-|x|)|\nabla u(x)|<\infty ;
$$

(b) Give an example of u that is harmonic in U and unbounded, but still satisfies the claim from (a).
3. Suppose u is a C^{2} function satisfying

$$
\left\{\begin{aligned}
u_{t t} & =\Delta u \quad \text { in } \mathbb{R}^{n} \times \mathbb{R}^{+}, \\
u(x, 0) & =g(x), \\
\partial_{t} u(x, 0) & =h(x) .
\end{aligned}\right.
$$

Fix $T>0$ and consider the set

$$
K_{T}:=\{(x, t): 0 \leq t \leq T,|x| \leq T-t\} .
$$

Prove that, if $g(x)=h(x)=0$ for all $x \in B(0, T)$, then $u(x, t)=0$ for all $(x, t) \in K_{T}$.

PDE Screening exam Spring 2024

December 10, 2023

Problem 1. Find a classical solution $u(x, y)$ of the equation

$$
\left(\partial_{x} u\right)^{2}-x^{2}=\left(\partial_{y} u\right)^{2}-y^{2}
$$

in \mathbb{R}^{2} satisfying the boundary condition $u(y, y)=y^{2}$.
Problem 2. Let U be open and bounded in \mathbb{R}^{n}. Suppose u and Δu are continuous in U, and u satisfies that

$$
\left\{\begin{aligned}
\Delta u & =u^{4} \quad \text { in } U, \\
u & =0 \quad \text { on } \partial U .
\end{aligned}\right.
$$

(1) If $u \geq 0$ in \bar{U}, prove that $u \equiv 0$.
(2) If the condition $u \geq 0$ in \bar{U} is absent, what can you say about $u(x)$?

Problem 3. Let $P, Q, R, S \in \mathbb{R} \times \mathbb{R}^{+}$be consecutive vertices of a rectangle with sides parallel to the lines $x+t=0$ and $x-t=0$, respectively.
(1) Let $u=u(x, t) \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$be a solution to the wave equation in $\mathbb{R} \times \mathbb{R}^{+}$, show that

$$
u(P)+u(R)=u(Q)+u(S)
$$

(2) Let $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ be given functions. Find a solution to the wave equation in \mathbb{R}^{2} such that

$$
u(t-1, t)=\alpha(t), \quad u(5-t, t)=\beta(t)
$$

