- 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote the number of red balls in the sample of size n. In what follows we treat N, n as known and m as unknown.
 - (a) Find $P_m(X = x)$.
 - (b) Show that

$$\widehat{m} = \min\{\lfloor X(N+1)/n \rfloor, N\}.$$
(1)

is an MLE of m.

(c) Define

$$\underline{x}_{m,\alpha} = \max\{x \in \mathbb{Z} : P_m(X \le x) \le \alpha\}$$
$$\overline{x}_{m,\alpha} = \min\{x \in \mathbb{Z} : P_m(X \le x) \ge \alpha\}.$$

Show that

$$\{m: \underline{x}_{m,\alpha/2} < X \le \overline{x}_{m,1-\alpha/2}\}\tag{2}$$

is a $100(1 - \alpha)\%$ confidence interval for m, possibly conservative. *Hint:* Invert a hypothesis test of $H_0: m = m_0$ vs. $H_1: m \neq m_0$, and note that one of the inequalities in (2) is strict.

- 2. (a) Let $S_1 \sim Bin(n_1, p)$ and $S_2 \sim Bin(n_2, p)$ be two independent binomial random variables, and let $S = S_1 + S_2$. Identify the distribution of S_1 conditional on S = s, and give its parameter values in terms of an urn model.
 - (b) Now let $S_1 \sim Bin(n_1, p_1)$ and $S_2 \sim Bin(n_2, p_2)$ be independent, and $S = S_1 + S_2$ as above. Fisher's Exact Test of $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$ rejects H_0 when S_1 is large.
 - i. Show that, under H_0 , S is a sufficient statistic.
 - ii. Write down an expression for the *p*-value of Fisher's Exact Test, conditional on S = s, in terms of the density $f(s_1|s)$ of the distribution in part 2a.

- 1. Let X_1, \ldots, X_n be a random sample from a distribution with variance $\operatorname{Var}(X_1) = \sigma^2 < \infty$, and let $T_n = T_n(X_1, \ldots, X_n)$ be some statistic.
 - (a) Write down an expression for the jackknife estimator V_n of $Var(T_n)$ in terms of

 $T_{n-1,i} = T_{n-1}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \quad i = 1, \dots, n.$

(b) Now let $T_n = \overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ be the sample mean. Show that: i. $Var(T_n) = \sigma^2/n$ ii.

$$W_n = \frac{1}{n(n-1)} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

is an unbiased estimator of $\operatorname{Var}(T_n)$

iii. $V_n = W_n$

2. Given

- an index set S;
- a distribution $\pi = (\pi_i)$ on S, and $\pi_i > 0$ for all $i \in S$;
- a Markov chain on S with transition matrix $\mathbf{Q} = (q_{ij})$, where $q_{ij} > 0$ for all $i \neq j$ (the reference chain).

We construct a new Markov chain whose transition matrix $\mathbf{P} = (p_{ij})$ is given by

$$p_{ij} = q_{ij} \frac{\pi_j \, q_{ji}}{\pi_i \, q_{ij} + \pi_j \, q_{ji}}$$

(a) Show that

- i. This new chain is reversible.
- ii. The stationary distribution of this chain is π .

(b) Sketch an algorithm that generates random samples whose marginal distribution is π .

- 1. (a) Let $f_{\theta}(x), \theta \in \Theta \subseteq \mathbb{R}$, be a family of density functions with respect to some common measure. If we say that this family has the monotone likelihood ratio (MLR) property in the real-valued statistic T = T(x), what two properties must hold?
 - (b) Taking $\Theta = (0, \infty)$, let $f_{\theta}(x)$, $x = (x_1, \dots, x_n)$, be the joint density of a random sample of n i.i.d. uniform $(0, \theta)$ observations:

$$f_{\theta}(x) = \begin{cases} \theta^{-n}, & \text{if } x_i < \theta \text{ for all } i = 1, \dots, n \\ 0, & \text{otherwise.} \end{cases}$$

Show that this family has the MLR property, and give the statistic T.

(c) Given $\alpha \in (0,1)$ and $\theta_0 > 0$, find a uniformly most powerful level- α test of

$$H_0: \theta \le \theta_0$$
 vs. $H_1: \theta > \theta_0$

in terms of T(X). Find any critical values and randomization constants explicitly.

2. Recall that a log-normal distribution $\ln \mathcal{N}(x|\mu, \sigma^2)$ is a continuous probability distribution of a random variable whose logarithm is normally distributed $\mathcal{N}(x|\mu, \sigma^2)$. That is, if $X \sim \ln \mathcal{N}(x|\mu, \sigma^2)$, then $\log X \sim \mathcal{N}(x|\mu, \sigma^2)$. Suppose the only random number generator that you have is the one for log-normal distributions $\ln \mathcal{N}(x|\mu, \sigma^2)$. Propose an MCMC algorithm for estimating the following integral

$$I = \int_0^\infty e^{-x^4 - x^6 - x^8} \frac{e^x}{\alpha} dx,$$

where $\alpha = \int_0^\infty e^{-x^4 - x^6 - x^8} dx$ (is unknown). Describe the algorithm in detail.

Spring 2014 Math 541b Exam

- 1. Let X_1, X_2, \ldots, X_n be independent identically distributed samples from the Normal distribution $\mathcal{N}(\theta, \sigma^2)$ having mean θ and variance σ^2 .
 - (a) Does a Uniformly Most Powerful, or UMP, level α test of H_0 : $\sigma^2 \leq 1$ versus $H_1: \sigma^2 > 1$ exist if the mean θ is known? If so, find the form of the rejection region of the UMP test, and if not, explain why not.
 - (b) Does a UMP level α test of $H_0: \sigma^2 \leq 1$ versus $H_1: \sigma^2 > 1$ exist, if both θ and σ^2 are unknown, with the restriction $\theta/\sigma^2 = 2$?
- 2. Consider a vector $\mathbf{X} = (X_1, X_2, X_3)$ of counts with distribution given by the multinomial distribution with probabilities

$$P(\mathbf{X} = \mathbf{x}) = \binom{n}{x_1, x_2, x_3} \prod_{i=1}^3 p_i^{x_i}$$

for $\mathbf{x} = (x_1, x_2, x_3)$, a vector of non-negative integers summing to n, and

$$(p_1, p_2, p_3) = \left(\frac{1}{3} + \frac{\theta}{3}, \frac{2\theta}{3}, \frac{2}{3} - \theta\right)$$
 for some $\theta \in (0, 1)$.

- (a) Write out the equation that would need to be solved in order to obtain the maximum likelihood estimate of θ .
- (b) Show that if additional 'missing data' is now introduced to form a 'full model' that a simpler equation then that in part (a) results, and solve it explicitly. Hint: Consider the first cell.
- (c) Specify the steps of an EM algorithm that takes advantage of the simplification obtained by treating the situation as a missing data problem as in part (b).

Fall 2014 Math 541b Exam

1. (a) Let $q_{x,y}$ be a Markov transition function, and π_x a probability distribution on a finite state space S. Show that the Markov chain that accepts moves made according to $q_{x,y}$ with probability

$$p_{x,y} = \min\left\{\frac{\pi_y q_{y,x}}{\pi_x q_{x,y}}, 1\right\},\,$$

and otherwise remains at x, has stationary distribution π_x . Show that if $q_{x,y}$ and π_x are positive for all $x, y \in S$ then the chain so described has unique stationary distribution π_x .

(b) Let f(y) and g(y) be two probability mass functions, both positive on \mathbb{R} . With X_1 generated according to g, consider the Markov chain X_1, X_2, \ldots that for at stage $n \ge 1$ generates an independent observation Y_n from density g, and accepts this value as the new state X_{n+1} with probability

$$\min\left\{\frac{f(Y_n)g(X_n)}{f(X_n)g(Y_n)},1\right\}$$

and otherwise sets X_{n+1} to be X_n . Prove that the chain converges in distribution to a random variable with distribution f.

- (c) The accept/reject method. Let f and g be density functions on \mathbb{R} such that the support of f is a subset of the support of g, and suppose that there exists a constant M such that $f(x) \leq Mg(x)$. Consider the procedure that generates a random variable with distribution g, an independent random variable with the uniform distribution U on [0, 1] and sets Y = X when $U \leq f(X)/Mg(X)$. Show that Y has density f.
- 2. Let f be a real valued function on \mathbb{R}^n , and $Z = f(X_1, \ldots, X_n)$ for X_1, \ldots, X_n independent random variables.
 - (a) With $E^{(i)}(\cdot) = E(\cdot|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$ show the following version of the Efron-Stein inequality

$$\operatorname{Var}(Z) \le E\left(\sum_{i=1}^{n} (Z - E^{(i)}Z)^2\right).$$
(1)

Hint: With $E_i(\cdot) = E(\cdot|X_1, \ldots, X_i)$, show that

$$Z - EZ = \sum_{i=1}^{n} \Delta_i$$
 where $\Delta_i = E_i Z - E_{i-1} Z$,

compute the variance of Z in this form, use properties of conditional expectation such as $E_i(E^{(i)}(\cdot)) = E_{i-1}(\cdot)$, and (conditional) Jensens' inequality.

(b) Letting (X'_1, \ldots, X'_n) be an independent copy of (X_1, \ldots, X_n) , with

$$Z'_{i} = f(X_{1}, \dots, X_{i-1}, X'_{i}, X_{i+1}, \dots, X_{n}),$$

show that

$$\operatorname{Var}(Z) \le \frac{1}{2} E\left(\sum_{i=1}^{n} (Z - Z'_{i})^{2}\right).$$

Hint: Express the right hand side of (1) in terms of conditional variances, and justify and use the conditional version of the fact that if X and Y are independent and have the same distribution then the variance of X can be expresses in terms of $E(X - Y)^2$.

Spring 2015 Math 541b Exam

1. Let X_1, X_2, \ldots, X_n be independent Cauchy random variable with density

$$f(x|\theta) = \frac{1}{\pi(1 + (x - \theta)^2)},$$

and let $\widetilde{X_n}$ = median of $\{X_1, X_2, \dots, X_n\}$.

(a) Prove that $\sqrt{n}(\widetilde{X_n} - \theta)$ is asymptotically normal with mean 0 and variance $\pi^2/4$ by showing that as n tends to infinity,

$$P(\sqrt{n}(X_n - \theta) \le a) \longrightarrow P(Z \ge -2a/\pi)$$

where Z is a standard normal random variable. *Hint:* If we define Bernoulli random variables $Y_i = 1_{\{X_i \leq \theta + a/\sqrt{n}\}}$, the event $\{\widetilde{X}_n \leq \theta + a/\sqrt{n}\}$ is equivalent to $\{\sum_i Y_i \geq (n+1)/2\}$ when n is odd. Applying the CLT might also be needed.

- (b) Using the result from part (a), find an *approximate* α -level large sample test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.
- 2. We observe independent Bernoulli variables X_1, X_2, \ldots, X_n , which depend on unobservable variables Z_1, \ldots, Z_n which, given $\theta_1, \ldots, \theta_n$, are distributed independently as $N(\theta_i, 1)$, where

$$X_i = \begin{cases} 0 & \text{if } Z_i \le u \\ 1 & \text{if } Z_i > u \end{cases}$$

The values $\theta_1, \theta_2, \ldots, \theta_n$ are distributed independently as $N(\xi, \sigma^2)$. Assuming that u and σ^2 are known, we are interested in the maximum likelihood estimate of ξ .

- (a) Show that for any for given values of ξ and σ^2 , and all i = 1, ..., n, the random variable Z_i is normally distributed with mean ξ and variance $\sigma^2 + 1$.
- (b) Write down the likelihood function for the complete data Z_1, \ldots, Z_n when these values are observed.

(c) Now assume that only X_1, \ldots, X_n are observed, and show that the EM sequence for the estimation of the unknown ξ is given by

$$\xi^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} E(Z_i | X_i, \xi^{(t)}, \sigma^2).$$

Start by computing the expected log likelihood of the complete data.

(d) Show that

$$E(Z_i|X_i,\xi^{(t)},\sigma^2) = \xi^{(t)} + \sqrt{\sigma^2 + 1} \cdot H_i\left(\frac{u - \xi^{(t)}}{\sqrt{\sigma^2 + 1}}\right)$$

where

$$H_i(t) = \begin{cases} \frac{\phi(t)}{1 - \Phi(t)} & \text{if } X_i = 1\\ -\frac{\phi(t)}{\Phi(t)} & \text{if } X_i = 0, \end{cases}$$

and $\Phi(t)$ and $\phi(t)$ are cumulative distribution and density function of a standard normal variable, respectively.

- 1. Let X_1, \ldots, X_n be a sample from distribution F, let $X_{(1)} \leq \ldots \leq X_{(n)}$ be the corresponding order statistics, and let θ and $\tilde{\theta}$ be the population and sample median, respectively. Assume that the sample size is 3 (n = 3),
 - (a) Find the distribution of the ordered bootstrap sample $(X_{(1)}^*, X_{(2)}^*, X_{(3)}^*)$, where X_i^* 's are randomly selected from the sample with replacement.
 - (b) Determine the bootstrap estimator $\widehat{\lambda_1}$ of the bias of sample median, $\lambda_1 = E(\tilde{\theta}) \theta$.
 - (c) Determine the bootstrap estimator $\widehat{\lambda_2}$ of the variance of sample median, $\lambda_2 = Var(\tilde{\theta})$.
- 2. Denote $\mathbf{z} \in \mathbb{R}^2$ by $\mathbf{z} = (x, y)$, and let $\mathbf{Z}_1, \ldots, \mathbf{Z}_n$ be independent with distribution $\mathcal{N}(0, \Sigma)$ where

$$\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$
 for $\rho \in (-1, 1)$, unknown.

a. Write down the $\mathcal{N}(0, \Sigma)$ density function, and the likelihood

$$L(\rho) = f(\mathbf{x}_1, \dots, \mathbf{x}_n; \rho)$$

of the sample.

- b. Determine the Neyman Pearson procedure for testing $H_0: \rho = 0$ versus $H_1: \rho = \rho_0$ at level $\alpha \in (0,1)$ for some $\rho_0 \neq 0$ in (0,1). (You do not need to explicitly write down any null distributions arising.)
- c. Determine if the test in b) is uniformly most powerful for testing $H_0: \rho = 0$ versus $H_1: \rho > 0$, and justify your conclusion.

1. Let X_1, \ldots, X_n be i.i.d. from a normal distribution with unknown mean μ and variance 1. Suppose that negative values of X_i are truncated at 0, so that instead of X_i , we actually observe

$$Y_i = \max(0, X_i), \quad i = 1, 2, \dots, n,$$

from which we would like to estimate μ . By reordering, assume that $Y_1, \ldots, Y_m > 0$ and $Y_{m+1} = \ldots = Y_n = 0$.

(a) Explain how to use the EM algorithm to estimate μ from Y_1, \ldots, Y_n . Specifically, give the details about E-step and M-step. Show that a recursive formula for the successive EM estimates $\mu^{(k+1)}$ is

$$\mu^{(k+1)} = \frac{1}{n} \sum_{i=1}^{m} Y_i + \frac{n-m}{m} \mu^{(k)} - \frac{n-m}{m} \frac{\phi(\mu^{(k)})}{\Phi(-\mu^{(k)})},$$

where $\phi(x)$ is probability density function and $\Phi(x)$ is cumulative density function of the standard normal distribution.

- (b) Find the log-likelihood function $\log L(\mu)$ based only on observed data, and use it to write down a (nonlinear) equation which the MLE $\hat{\mu}$ satisfies.
- (c) Use the equation in part (b) to verify that $\hat{\mu}$ is indeed a fixed point of the recursion found in (a).
- (d) Prove that $\mu^{(k)} \longrightarrow \hat{\mu}$ for any starting point $\mu^{(0)}$, providing at least one of the observations is not truncated. To do this, prove that the difference between $\mu^{(k)}$ and $\hat{\mu}$ gets smaller as kgets larger. *Hint:* The Mean Value Theorem and the following inequalities, which you can use without proof, might be useful.

$$0 < \frac{\phi(x)[\phi(x) - x\Phi(-x)]}{\Phi^2(-x)} < 1,$$
 for all x .

Note: The Mean Value Theorem says that if f is continuous and differentiable on the interval (a, b), then there is a number c in (a, b) such that f(b) - f(a) = f'(c)(b - a).

- 2. Let X_1, \ldots, X_n be iid Unif $(0, \theta)$, where $\theta > 0$ is unknown.
 - (a) Find the MLE $\hat{\theta}$, its c.d.f. $F_{\theta}(u) = P_{\theta}(\hat{\theta} \leq u)$, and its expected value $E_{\theta}(\hat{\theta})$.
 - (b) Consider a confidence interval for θ of the form

$$[a\widehat{\theta}, b\widehat{\theta}], \quad \text{where } 1 \le a \le b \text{ are constants.}$$
(1)

For given $0 < \alpha < 1$, characterize all $1 \le a \le b$ making $[a\hat{\theta}, b\hat{\theta}]$ a $(1 - \alpha)$ confidence interval.

(c) Find values $1 \le a \le b$ minimizing the expected length $E_{\theta}(b\hat{\theta} - a\hat{\theta})$ among all $(1-\alpha)$ confidence intervals of the form (1), uniformly in θ .

- 1. Suppose that out of n i.i.d. Bernoulli trials, each with probability p of success, there are zero successes.
 - (a) Given $\alpha \in (0, 1)$, derive an exact upper (1α) -confidence bound for p by either pivoting the c.d.f. of the Binomial distribution or inverting the appropriate hypothesis test.
 - (b) There is a famous rule of thumb called the "Rule of Threes" which says that, when n is large, 3/n is an approximate upper 95%-confidence bound for p in the above situation. Justify the Rule of Threes by applying a large-n first order Taylor approximation to your answer from Part 1a, and use the fact that $|\log(.05)| \approx 3$.
- 2. Let w_1, \ldots, w_n be i.i.d. from the mixture distribution

$$f(w;\psi) = \sum_{i=1}^{g} \pi_i f_i(w)$$

where $\psi = (\pi_1, \ldots, \pi_g)$ is a vector of unknown probabilities summing to one, and f_1, \ldots, f_g are known density functions.

- (a) Write an equation one would solve to find the maximum likelihood estimate of ψ .
- (b) To implement the EM algorithm, write down the full likelihood when in addition to the sample w_1, \ldots, w_n , the 'missing data'

 $Z_{ij} = \mathbf{1}$ (the *j*th observation w_j comes from *i*th group f_i),

is also observed.

- (c) Write down the estimate of ψ using the full data likelihood in part (2b).
- (d) Write down the E and M steps of the EM algorithm.

- 1. Let $\mathbf{X} = (X_1, \ldots, X_n)$ be a vector of i.i.d. $N(\mu, \sigma^2)$ random variables, where both μ and σ are unknown.
 - (a) Given $\alpha_1 \in (0, 1)$, write down an exact $(1 \alpha_1)$ confidence interval for μ .
 - (b) Given $\alpha_2 \in (0, 1)$, write down an exact $(1 \alpha_2)$ confidence interval for σ^2 .
 - (c) Letting $\mathcal{I}_{\alpha_1}(\mathbf{X})$ and $\mathcal{J}_{\alpha_2}(\mathbf{X})$ denote the confidence intervals in parts 1a and 1b, respectively, for given $\alpha \in (0, 1)$ show how to choose α_1, α_2 so that the overall coverage probability satisfies

$$P_{\mu,\sigma^2}\left(\mu \in \mathcal{I}_{\alpha_1}(\boldsymbol{X}) \text{ and } \sigma^2 \in \mathcal{J}_{\alpha_2}(\boldsymbol{X})\right) \ge 1 - \alpha \quad \text{for all} \quad \mu, \sigma^2$$

The inequality does not have to be sharp.

- 2. Let P_0 and P_1 be probability distributions on \mathbb{R} with densities p_0 and p_1 with respect to Lebesgue measure, and let X_1, \ldots, X_n be a sequence of i.i.d. random variables.
 - (a) Let β denote the power of the most powerful test of size α , $0 < \alpha < 1$, for testing the null hypothesis $H_0: X_1, \ldots, X_n \sim P_0$ against the alternative $H_a: X_1, \ldots, X_n \sim P_1$. Show that $\alpha < \beta$ unless $P_0 = P_1$.
 - (b) Let P_0 be the uniform distribution on the interval [0, 1] and P_1 be the uniform distribution on [1/3, 2/3]. Find the Neyman-Pearson test of size α for testing H_0 against H_a (consider all possible values of $0 < \alpha < 1$).

1. Suppose lifetimes $X_1, \ldots, X_n, X_{n+1}, \ldots, X_{n+m}$ of n+m lightbulbs are independent and have the exponential distribution

$$p(x;\theta) = (1/\theta) \exp(-x/\theta) \mathbf{1}(x>0)$$

with unknown parameter θ . The first *n* lifetimes have been observed precisely, but the only information recorded on the final *m* observations is whether or not the bulb lasted longer than some time *t*. We consider using the EM algorithm to compute the maximum likelihood estimate of θ .

- a. Write down the full likelihood function, that is, had all failure times been observed, and the full log likelihood.
- b. Write down the maximum likelihood estimate that is obtained by using the full likelihood.
- c. For X an exponential variable with the same distribution as the data, compute

$$E[X|X > t]$$
 and $E[X|X < t].$

- d. Describe the E and M step for computing the maximum likelihood estimate of θ under the data as observed.
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\mu, 1)$ random variables.
 - (a) Find the likelihood ratio test of size $0 < \alpha < 1$ for testing $H_0: \mu = 0$ against $H_a: \mu \neq 0$.
 - (b) Is this test uniformly most powerful? Justify your answer.
 - (c) Does a uniformly most powerful test exist for this problem? Either exhibit such a test or prove that none exists.

1. Let $M(n; p_1, \ldots, p_k)$ denote the multinomial distribution with n trials and cell probabilities p_1, \ldots, p_k . Now let $X = (x_1, x_2, x_3, x_4)$ have multinomial distribution

$$M(200; 1/2 + \theta/2, 1/4 - \theta/4, 1/4 - \theta/3, \theta/12)$$

for some $\theta \in (0, 3/4)$. Write down the E-step and M-step of the Expectation Maximization algorithm for estimating θ by assuming that there is actually data $(x_{11}, x_{12}, x_{21}, x_{22}, x_3, x_4)$ from 6 cells rather than 4, but that the first 4 cells are unobserved but $x_1 = x_{11} + x_{12}$ and $x_2 = x_{21} + x_{22}$ are observed. *Hint:* Choose convenient cell probabilities for the unobserved cells in the complete model.

2. Recall that the bivariate normal distribution with mean $(\mu_1, \mu_2)^T$, variances σ_1^2, σ_2^2 , and correlation coefficient ρ has density

$$f(y_1, y_2) \propto \exp\left[-\frac{1}{2(1-\rho^2)} \left\{ \left(\frac{y_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{y_2 - \mu_2}{\sigma_2}\right)^2 - \frac{2\rho(y_1 - \mu_1)(y_2 - \mu_2)}{\sigma_1 \sigma_2} \right\} \right]$$
(1)

for $y_1, y_2 \in (-\infty, \infty)$.

Now let θ be a random variable with (univariate) normal distribution $N(\mu, \tau^2)$ and, given θ , let X_1, \ldots, X_n be i.i.d. with (univariate) normal distribution $N(\theta, \sigma^2)$. Let $\overline{X} = (1/n) \sum_{i=1}^n X_i$ denote the sample mean. For this problem assume that θ is unobserved, the X_i are observed, τ and σ are known values, and μ is an unknown parameter.

- (a) Find the joint distribution of θ and \overline{X} . Give the name of the distribution and the values of any parameters in terms of quantities defined above. *Hint:* It may help to use the change of variables $\tilde{\theta} = \theta \mu$ and $\tilde{X} = \overline{X} \mu$.
- (b) Using your answer from part (2a), find the marginal distribution of \overline{X} . Give the name of the distribution and the values of any parameters in terms of quantities defined above.
- (c) Using your answer from part (2b), for arbitrary $\alpha \in (0, 1)$ write down an exact (1α) confidence interval for μ in terms of observed random variables and known quantities. Compare its width with the standard interval for θ and comment.

1. Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be known vectors (all vectors are column vectors in this problem) with $p \leq n$, let $\beta \in \mathbb{R}^p$ be an unknown parameter vector, and let Y_1, \ldots, Y_n be independent Bernoulli random variables such that

$$P_{\beta}(Y_i = 1) = 1 - P_{\beta}(Y_i = 0) = \Phi(\mathbf{x}'_i \beta), \quad i = 1, \dots, n,$$
(1)

where Φ denotes the c.d.f. of the standard normal distribution and "prime" denotes transpose. This problem concerns using the EM algorithm to find the MLE of β from the data $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)'$.

(a) Show that if $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. standard normals and $W_i = x'_i \beta + \varepsilon_i, i = 1, \ldots, n$, then

$$Y_i = \mathbf{1}\{W_i > 0\}, \quad i = 1, \dots, n$$
 (2)

have the distribution (1). For the rest of this problem assume the Y_i are defined by (2) and observed but that the W_i and ε_i are unobserved.

(b) Show that the complete log-likelihood function $\ell_c(\beta)$ of W_1, \ldots, W_n , if they were observed, is given by

$$\ell_c(\boldsymbol{eta}) = -rac{1}{2}\sum_{i=1}^n (W_i - \boldsymbol{x}_i' \boldsymbol{eta})^2$$

up to additive constants.

(c) The E step of the EM algorithm involves computing

$$Q(\widetilde{\boldsymbol{\beta}}, \boldsymbol{\beta}) = E_{\boldsymbol{\beta}} \left[\ell_c(\widetilde{\boldsymbol{\beta}}) \middle| \boldsymbol{Y} \right].$$

Show that

$$E_{\beta}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|\boldsymbol{Y}\right]=E_{\beta}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}\right],\tag{3}$$

and, up to additive terms C, C' that don't depend on β , that

$$E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}=1\right]=\left(\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}-2\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\left(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta}+\frac{\phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}{\Phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}\right)+C,\quad\text{and}\qquad(4)$$

$$E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}=0\right]=\left(\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}-2\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\left(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta}-\frac{\phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}{\Phi(-\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}\right)+C^{\prime},$$
(5)

where ϕ is the standard normal density function. You don't have to explicitly find C, C'.

(d) Let X be the $(n \times p)$ matrix with rows x'_1, \ldots, x'_n , assumed to be of full rank p, and let $v = v(\beta)$ be the *n*-long vector with entries

$$v_i = \begin{cases} \phi(\boldsymbol{x}_i'\boldsymbol{\beta})/\Phi(\boldsymbol{x}_i'\boldsymbol{\beta}), & \text{if } Y_i = 1\\ -\phi(\boldsymbol{x}_i'\boldsymbol{\beta})/\Phi(-\boldsymbol{x}_i'\boldsymbol{\beta}), & \text{if } Y_i = 0 \end{cases}$$

Show that the recursion for the EM iterates $\{\beta^{(k)}\}$ given by maximizing $Q(\tilde{\beta}, \beta)$ over $\tilde{\beta}$ is

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{v}(\boldsymbol{\beta}^{(k)}).$$
(6)

Hint: Write $Q(\widetilde{\beta}, \beta)$ in matrix notation using **X** and **v** and then maximize over $\widetilde{\beta}$.

2. Let $\theta \sim N(0,1)$ and, conditional on θ , let $Y_i \sim N(\theta,1), i = 1, 2, \cdots, n$ be i.i.d. Let $\overline{Y} = \sum_{i=1}^n Y_i/n$.

- (a) Compute the density function of \overline{Y} .
- (b) Compute the posterior distribution of θ given \overline{Y} .
- (c) Compute the conditional expectation $E[\theta|\overline{Y}]$, and determine the behavior of the posterior distribution of θ as $n \to \infty$.

- 1. Let X_1, \ldots, X_n be an i.i.d. sample from $N(\theta, \theta)$ distribution, where $\theta > 0$.
 - (a) Find a non-constant pivotal quantity (that is, a function of X_1, \ldots, X_n and θ whose distribution does not depend on θ). *Hint:* See if you can make $\sum_{i=1}^{n} X_i$ into a pivot via simple transformations involving θ .
 - (b) Use the pivotal quantity from part (a) to construct a confidence interval for θ .
- 2. For nonnegative integers θ , n, N with $n \leq N$ and $\theta \leq N$, the hypergeometric distribution Hyper (θ, n, N) has p.d.f.

$$f_{\theta}(x) = P_{\theta}(X = x) = \left(\frac{\theta}{x}\right) \binom{N - \theta}{n - x} / \binom{N}{n}$$
(1)

for nonnegative integers x and values of the parameters such that the above quotient in (1) is defined, with $f_{\theta}(x) = 0$ otherwise. Recall that this is the distribution of the number of white balls in a simple random sample without replacement of size n from an urn containing θ white balls and $N - \theta$ black balls. Throughout this problem we shall treat n (i.e., the sample size) and N (i.e., the population size) as fixed and known, and θ as an unknown parameter.

- (a) If $X \sim \text{Hyper}(\theta, n, N)$, show that this family of distributions has the monotone likelihood ratio property in X.
- (b) Given $\alpha \in (0, 1)$, give the form of an exactly level- α UMP test of $H_0: \theta = N$ vs. $H_1: \theta < N$ in as simple a form as possible, involving X. Your test may need to involve randomization to achieve the exact level α . Justify that the test is UMP. *Hint:* For this you only need to consider $f_N(x)$, which takes a particularly simple form.
- (c) Suppose that among the urn's N balls, only 1 is black. Given $\alpha, \beta \in (0, 1)$, find an expression for the smallest sample size n guaranteeing that your level- α UMP test will reject H_0 with probability at least 1β .

- 1. Let X_1, \ldots, X_n be i.i.d. with exponential distribution with parameter $\theta > 0$, meaning that that pdf of X_1 is $f_{\theta}(x) = \begin{cases} \theta e^{-x\theta}, & x \ge 0, \\ 0, & x < 0. \end{cases}$
 - (a) Find the Maximum Likelihood estimator of θ .
 - (b) Find the Likelihood ratio test for testing $H_0: \theta = \theta_0$ against the alternative $H_a: \theta \neq \theta_0$ to make the test approximately level $\alpha \in (0, 1)$. Specify the test statistic and the rejection region (based on its asymptotic distribution).
 - (c) Show that the Likelihood ratio test for testing $H_0: \theta \leq \theta_0$ against the alternative $H_a: \theta > \theta_0$ (where $\theta_0 > 0$) rejects when $\bar{X}_n \leq C$ for C depending on the desired size of the test, where $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- 2. Let X_1 and X_2 be two independent observations from some distribution F with mean θ (nothing else is known about F). Assume that we estimate the mean via the sample mean $\hat{\theta} = \frac{X_1 + X_2}{2}$. We are interested in estimating the probability $\lambda(t) = P_F\left(\hat{\theta} \theta \leq t\right)$ for all t.
 - (a) We are going to estimate $\lambda(t)$ using bootstrap. Assume that observed values are $X_1 = 1$ and $X_2 = 3$. Let \hat{X}_1 and \hat{X}_2 be the bootstrap sample, and find its distribution (for better readability, you may draw a small table with possible values of (\hat{X}_1, \hat{X}_2) and their probabilities).
 - (b) Let $\hat{\theta}^* = \frac{\hat{X}_1 + \hat{X}_2}{2}$. Find the distribution of $\hat{\theta}^* \hat{\theta}$ (conditionally on the values of X_1 and X_2), and estimate $\lambda(-0.5)$.
 - (c) Now assume that F has density $f_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}$. Again, we would like to estimate the probability $P_F\left(\hat{\theta} \theta \le t\right)$ via bootstrap. How would you proceed in this case? Your solution has to use the additional information about the density.

- 1. For given density functions p and q we consider the Neyman-Pearson tests of level $\alpha \in (0,1)$ for the hypotheses $H_0: r = p$ versus $H_1: r = q$, when observing n independent observations from density r.
 - (a) Derive the Neyman-Pearson test for a given level $\alpha \in (0,1)$ when p and q are the density functions of the $\mathcal{N}(\mu, \sigma^2)$ distribution with means $\mu = \mu_0$ and $\mu = \mu_1$, respectively, with known variance σ^2 . Make the form of the test as simple as you can.
 - (b) Find the power $\beta(\mu)$ of the test in a) as function of μ .
 - (c) For any given density functions p and q such that the Kullback Liebler Divergence

$$D(p||q) = E_p \left[\log \frac{p(X)}{q(X)} \right]$$
 and the variance $\tau_{p||q}^2 = \operatorname{Var}_p \left[\log \frac{p(X)}{q(X)} \right]$

are finite, use the Central Limit Theorem to derive an approximation to the Neyman Pearson test for a given level $\alpha \in (0, 1)$.

- (d) Assuming in addition that D(q||p) and $\tau_{q||p}^2$ are finite, likewise approximate the power function of the test in (c), and show that it recovers the normal case in (b).
- 2. Throughout this problem let a > 0 be known constant. Let f be the density function

$$f(x) \propto a - x$$
, for $0 < x < a$.

Assuming the only random variables you have access to are i.i.d. U(0, 1), give the details of a way to simulate a random variable with distribution f.

- 1. Let F be a given strictly increasing cumulative distribution function with corresponding density f on the real line. Assume that n i.i.d. random variables are generated from F, but we are told only $X := \max(X_1, \ldots, X_n)$. In particular, the positive integer n itself is unknown.
 - (a) Find the probability density function $f_n(\cdot)$ of X.
 - (b) Show that the family $\{f_n(\cdot), n \ge 1\}$ has monotone likelihood ratio with respect to some statistic, and make sure to identify the statistic involved.
 - (c) Find the uniformly most powerful test for testing $H_0: n \leq 5$ against $H_a: n > 5$.
- 2. Suppose that X_1, \ldots, X_n are i.i.d. random variables with mean μ , variance σ^2 and finite moments of all orders. We are interested in estimating $g(\mu)$ where $g : \mathbb{R} \to \mathbb{R}$ is some smooth function with bounded third derivative.
 - (a) The "plug-in" estimator of $g(\mu)$ is $g(\overline{X}_n)$ where $\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$ is the sample mean. Using Taylor's expansion and assuming that n is large, find the leading term in the expression for the bias $b := Eg(\overline{X}_n) g(\mu)$ of $g(\overline{X}_n)$ for estimating $g(\mu)$.
 - (b) Since μ is unknown, the bias is also unknown. Explain how one can use the non-parametric bootstrap to estimate the bias b. Specifically, write down the expression for the bootstrap estimator of the bias.
 - (c) Let $g(x) = x^2$ and n = 2. Suppose that the observed values are $X_1 = 1$ and $X_2 = 3$. Find the exact value of the bootstrap estimator of the bias in this case. Which value would you use to estimate $g(\mu)$?

1. (Wilk's Theorem) Let X_1, \ldots, X_n be independent random variables distributed as $\mathcal{P}(\lambda), \lambda \in \Lambda = (0, \infty)$, that is, with probability mass function

$$P_{\lambda}(k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, \dots$$

For $\lambda_0 \in \Lambda$, we wish to test $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$. It may be useful to recall that the mean and variance of the $\mathcal{P}(\lambda)$ distribution are both equal to λ .

- 1.1. Write out the Generalized likelihood ratio test statistic G_n for this instance.
- 1.2. Verify directly that the conclusion of Wilk's theorem holds, that is, asymptotically as $n \to \infty$ that $-2 \log G_n$ has a χ^2 distribution, and specify its degrees of freedom. You may use the fact that $\overline{X}/\lambda_0 = 1 + (\overline{X} - \lambda_0)/\lambda_0$, and also apply $x - x^2/2$ as an approximation to $\log(1+x)$ for x small, without further justification.
- 1.3. Using direct methods as in the previous part, develop an asymptotic for the power of the test in terms of the non-central χ^2 statistic for the sequence of alternatives of the form $\lambda_n = \lambda_0 + \delta/\sqrt{n}$; make sure you specify both the degrees of freedom and the non-centrality parameter. (Recall that the sum $(Z_1 + \mu_1)^2 + \cdots + (Z_k + \mu_k)^2$, where Z_1, \ldots, Z_k are iid $\mathcal{N}(0, 1)$, has a non central χ^2 distribution on k degrees of freedom with non-centrality parameter $\mu_1^2 + \cdots + \mu_k^2$.)
- 2. (Jackknife) Let X_1, \ldots, X_n be independent with common distribution function depending on $\theta \in \Theta \subset \mathbb{R}$, unknown.
 - 2.1. Let W_1, W_2, \ldots be a sequence of estimators for a parameter $\theta \in \Theta$ so that for any $n \ge 1$, $W_n = t_n(X_1, \ldots, X_n)$ for some $t_n : \mathbb{R}^n \to \Theta$. For any $n \ge 1$, define the **jackknife estimator** of θ to be

$$Z_n := nW_n - \frac{n-1}{n} \sum_{i=1}^n t_{n-1}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n).$$

Assume that W_1, W_2, \ldots are asymptotically unbiased in the sense that there exists $a, b \in \mathbb{R}$ such that

$$EW_n = \theta + a/n + b/n^2 + O(1/n^3), \quad \forall n \ge 1.$$
 (*)

Show that if b = 0 and the $O(1/n^3)$ term is zero in (*), then Z_n is unbiased for θ .

2.2. Show, generally that when (*) holds,

$$EZ_n = \theta + O(1/n^2), \quad \forall n \ge 1.$$

2.3. Let X_1, \ldots, X_n be i.i.d. Bernoulli random variables with parameter $0 < \theta < 1$. The MLE for θ is the sample mean, so by the Functional Equivariance Property of the MLE, the MLE for θ^2 is

$$W_n := \left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2.$$

(You can take this fact as given.) Show that W_n is a biased estimate of θ^2 , but that the jackknife estimator of θ^2 is unbiased.

- 1. Let $\mathbf{X} \sim \mathcal{N}_n(\mu, \Sigma)$, that is, \mathbf{X} has the multivariate normal distribution in \mathbb{R}^n with mean μ and covariance matrix Σ , and for all $\alpha \in (0, 1)$ defined z_α by $P(Z \leq z_\alpha) = \alpha$ where $Z \sim \mathcal{N}(0, 1)$.
 - (a) Let Σ be positive definite, and for fixed μ_1 and μ_2 , distinct vectors in \mathbb{R}^n , express the Neyman-Pearson test with type I error $\alpha \in (0, 1)$ of $H_0: \mu = \mu_0$ versus $H_1: \mu = \mu_1$ in terms of a test statistic $T(\mathbf{X})$ that has the $\mathcal{N}(0, 1)$ distribution under H_0 .
 - (b) Find the power function β of the test in (a) and determine what it specializes to in the case where the components of X are independent and identically distributed univariate normal distributions.
 - (c) Let Σ be a non-zero, non-negative definite covariance matrix that is not positive definite. Show that for some values of μ_0, μ_1 that there exists tests for the hypotheses in part (a) that have type I error $\alpha = 0$ and power $\beta = 1$. Determine a set of necessary and sufficient conditions on μ_0, μ_1 for that to be the case, prove that your conditions are as claimed, and give the form of these $\alpha = 0, \beta = 1$ tests.
- 2. Let X_1, \ldots, X_n be i.i.d. with Bernoulli(p) distribution for some $p \in (0, 1)$, meaning that $P(X_1 = 1) = p$, $P(X_1 = 0) = 1 p$.
 - (a) Show that the maximum likelihood estimator of p is $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$.
 - (b) For some $p_0 \in (0,1)$, we would like to test the null hypothesis $H_0: p = p_0$ against the alternative $H_a: p \neq p_0$ using the likelihood ratio test. The log-likelihood ratio test statistic is defined as $\Lambda_n = \log \left(\frac{\sup_{p \in [0,1]} L_n(p)}{L_n(p_0)} \right)$ where $L_n(p)$ is the likelihood function, that is, the joint density of the observations, considered as a function of p. Show that the explicit expression for this test statistic is

$$\Lambda_n = n \left(\bar{X}_n \log \left(\frac{\bar{X}_n}{p_0} \right) + (1 - \bar{X}_n) \log \left(\frac{1 - \bar{X}_n}{1 - p_0} \right) \right).$$

(c) Prove that

$$2\Lambda_n = \frac{n\left(\bar{X}_n - p_0\right)^2}{p_0(1 - p_0)} + o_P(1)$$

where $o_P(1)$ is a term that converges to 0 in probability as $n \to \infty$. Deduce from this expression the approximate distribution of $2\Lambda_n$ for large n.

For this task, you may use the following facts without proving them: $\bar{X}_n \log\left(\frac{\bar{X}_n}{p_0}\right) = (\bar{X}_n - p_0 + p_0) \log\left(1 + \frac{\bar{X}_n - p_0}{p_0}\right)$, $\log(1 + x) = x - \frac{x^2}{2} + o(x^2)$ when $x \to 0$ and $n \cdot o\left((\bar{X}_n - p_0)^2\right)$ converges to 0 in probability as $n \to \infty$ (here, $o(\cdot)$ stands for "small-O").

- 1. Let X_1, \ldots, X_n be i.i.d. with Poisson distribution $P(\lambda)$ where $\lambda \in (0, \infty)$, that is, for all $i = 1, \ldots, n$ that $P(X_i = k) = e^{-\lambda} \lambda^k / k!, k = 0, 1, \ldots$ and are independent.
 - (a) Show that this family of distributions has the monotone likelihood ratio property with respect to an appropriately chosen statistic $T(X_1, \ldots, X_n)$.
 - (b) For the statistical model described, give an example of a hypothesis testing problem $H_0: \theta \in \Theta_0$, $H_a: \theta \in \Theta_a$ where Θ_0, Θ_a are two subsets of $(0, \infty)$ that satisfy $\Theta_0 \cap \Theta_a = \emptyset$, $\Theta_0 \cup \Theta_a = (0, \infty)$, that admits a uniformly most powerful test of any size $\alpha \in [0, 1]$. Justify your answer.
 - (c) For the statistical model described above, give an example of a hypothesis testing problem $H_0: \theta \in \Theta_0, H_a: \theta \in \Theta_a$, with Θ_0, Θ_a satisfying the same properties as in part (b), that **does not** admit a uniformly most powerful test of given size $\alpha \in (0, 1)$. Justify your answer.
- 2. Let $X = (X_1, \ldots, X_n)$ be a random sample of size n from a family of probability densities $\{f_{\theta} \colon \theta \in \mathbb{R}\}$, so that $f_{\theta} \colon \mathbb{R}^n \to (0, \infty)$ for any $\theta \in \mathbb{R}$, and X_1, \ldots, X_n are i.i.d. Fix $\theta_0 \in \mathbb{R}$. Suppose we test the hypothesis H_0 that $\{\theta = \theta_0\}$ versus the alternative $\{\theta \neq \theta_0\}$. Let $Y = Y_n$ denote the MLE of θ , and assume that under P_{θ_0} that

$$Y_n \to_p \theta_0$$
 and $\sqrt{n}(Y - \theta_0) \to_d \mathcal{N}(0, I_{X_1}^{-1})$

where \rightarrow_p and \rightarrow_d denote convergence in probability and in distribution respectively, \mathcal{N} denote the normal distribution and I_X the Fisher information, which we assume exists.

Let

$$\lambda(X) := \frac{\sup_{\theta \in \mathbb{R}} f_{\theta}(X)}{f_{\theta_0}(X)}$$

denote the generalized likelihood ratio statistic. If H_0 is true, we will ask you to show that $-2 \log \lambda(X)$ converges in distribution as $n \to \infty$ to a chi-squared random variable with one degree of freedom, under some additional assumptions.

Fix $x \in \mathbb{R}^n$ and denote $\ell_n(\theta) := \log f_{\theta}(x)$. Below you may assume whatever smoothness conditions you require for your argument, but please note them when they are applied, in the form of, say: here we assume that a second order Taylor expansion for $\ell_n(\theta)$ holds with appropriate form of remainder.

(a) Using Taylor series, show that

$$-2\log\lambda(X) = -\ell_n''(\widehat{Y})(\theta_0 - Y)^2$$

where \widehat{Y} is some point in an interval with endpoints Y and θ_0 .

- (b) Using the weak law of large numbers, show that, for any $\theta \in \mathbb{R}$, $\frac{1}{n}\ell_n''(\theta)$ converges in probability to the constant $I_{X_1}(\theta)$ as $n \to \infty$, and that the same conclusion holds for $\frac{1}{n}\ell_n''(\hat{Y})$.
- (c) Combining the above observations, conclude that $-2 \log \lambda(X)$ converges in distribution to a chi-squared random variable with one degree of freedom.

- 1. Let $X_1, ..., X_n$ be an i.i.d. sample from the uniform distribution $U[0, \theta], \theta > 0$.
 - (a) Find a sufficient statistic for θ and construct a pivotal quantity for θ based on this sufficient statistic. Finally, construct a lower (1α) -confidence bound $\hat{\theta}_L$ for θ based on this pivotal quantity, that is, $P(\theta \ge \hat{\theta}_L) \ge 1 \alpha$.
 - (b) Show that the family of uniform distributions defined above has the monotone likelihood ratio property (with respect to which statistic?)
 - (c) Find the most powerful test of size $\alpha = 0.1$ for testing $H_0: \theta = \theta_0$ against $H_a: \theta > \theta_0$ for some $\theta_0 > 0$. Invert the rejection region of the test to construct a confidence interval for θ . Compare your result to part (a).
- 2. Let X_1, \ldots, X_n be i.i.d. normal $N(0, \sigma^2)$ for some $\sigma^2 > 0$.
 - (a) Find a maximum likelihood estimator (MLE) of σ^2 .
 - (b) Find a MLE of σ (without the square!), denoted \$\bar{\sigma}_n\$, and find the asymptotic distribution (as n → ∞), including the asymptotic variance, of \$\sqrt{n}(\bar{\sigma}_n \sigma)\$ using the general asymptotic properties of the MLE. (hint: you can use the fact that \$\mathbb{E}X_1^4 = 3\sigma^4\$)
 - (c) Assume that the sample is of size n = 2 and $X_1 = -2$, $X_2 = 4$. Find the upper 75% confidence bound for σ using the non-parametric bootstrap. When would the bootstrap approach be advantageous, compared to using the asymptotic pivotal quantity constructed in part (b)?

Spring 2024 Math 541b Exam

- 1. Let X, Y be exponential random variables with densities $f_X(t) = \lambda_1 e^{-\lambda_1 t}$, $t \ge 0$ and $f_Y(t) = \lambda_2 e^{-\lambda_2 t}$, $t \ge 0$, where $\lambda_1, \lambda_2 > 0$ are parameters. We would like to test $H_0 : \lambda_1 \le \lambda_2$ against the alternative $H_a : \lambda_1 > \lambda_2$. Note that the null and the alternative do not change under transformation of the parameters given by $(\lambda_1, \lambda_2) \mapsto (c\lambda_1, c\lambda_2)$, c > 0.
 - (a) What is the distribution of $\frac{X}{c}$ for c > 0?
 - (b) Suggest a function T(x, y) such that

$$T(x,y) = T(x',y') \iff x' = cx, \ y' = cy \text{ for some } c > 0,$$

and argue that T(X, Y) is a natural choice of the test statistic for the problem of testing H_0 against H_a .

- (c) Show that the density corresponding to the distribution of T(X, Y) is given by $p_T(t) = \frac{\lambda_2}{\lambda_1} \frac{1}{\left(t + \frac{\lambda_2}{\lambda_1}\right)^2}, t \ge 0.$
- (d) Note that the family of densities in part (c) depends only on one parameter $\tau = \frac{\lambda_2}{\lambda_1}$. Show that this family has the monotone likelihood ratio, and find the uniformly most powerful test for the problem H'_0 : $\tau \geq 1$ against H'_a : $\tau < 1$. Which test for the original problems does this give?
- 2. Let X_1, \ldots, X_n be an i.i.d. sample from normal distribution with mean μ and variance 1. It is known that $\mu \ge 0$.
 - (a) Does the uniformly most powerful test for testing $H_0: \mu = \mu_0$ against $H_a: \mu \neq \mu_0$ exist for any values of μ_0 ?
 - (b) Find the simplest possible form of the Likelihood Ratio test for testing $H_0: \mu = \mu_0$ against $H_a: \mu \neq \mu_0$ (please remember to take the fact that $\mu \geq 0$ into account!)
 - (c) Let $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$ be the sample mean. Assume that $\mu_0 > 0$ and prove that $\mathbb{P}(\bar{X}_n < 0) \to 0$ as $n \to \infty$ (for example, you can use Chebyshev's inequality). Use this fact to show directly that the asymptotic distribution of $2 \log \Lambda_n$, where $\Lambda_n = \frac{\sup_{\mu \ge 0} L_n(\mu)}{L_n(\mu_0)}$ and $L_n(\mu)$ is the likelihood function, is chi-squared with 1 degree of freedom (again, assuming that $\mu_0 > 0$).
 - (d) Find the asymptotic distribution of $2 \log \Lambda_n$ when $\mu_0 = 0$.