Spring 2024 Math 541a Exam

Problem 1. Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed (i.i.d.) random variables with the common distribution $N\left(\theta, \theta^{2}\right)$, where $\theta \in(0, \infty)$ is the unknown parameter. Let $W_{n}=n^{-1} \sum_{i=1}^{n} X_{i}^{2}$.

Fact: if $X \sim N\left(\mu, \sigma^{2}\right)$, then $\mathbb{E} X^{3}=\mu^{3}+3 \mu \sigma^{2}$ and $\mathbb{E} X^{4}=3 \sigma^{4}+6 \sigma^{2} \mu^{2}+\mu^{4}$.

1. Find a sequence of constants a_{n} and a function $b(\theta)$ such that $a_{n}\left(W_{n}-b(\theta)\right) \xrightarrow{d} T$, where T is a non-degenerate random variable with mean zero. What is the variance of T ? Here, a non-degenerate random variable means its variance is strictly positive.
2. Find the MLE $\hat{\theta}$ of θ.
3. Find a sequence of constants c_{n} and a function $d(\theta)$ such that $c_{n}(\hat{\theta}-d(\theta)) \xrightarrow{d} U$, where U is a non-degenerate random variable with mean zero. What is the variance of U ? [Hint: consider the multivariate Δ-method.]
4. Find a non-degenerate variance stabilizing transformation h of W_{n}, i.e., the asymptotic non-zero variance of $h\left(W_{n}\right)$ does not depend on θ.

Problem 2. The Information Inequality. Let \boldsymbol{X} be an observation in \mathbb{R}^{n} with density $p(\boldsymbol{x}, \theta)$ for $\theta \in \Theta \subset \mathbb{R}^{p}$, and $T=T(\boldsymbol{X})$ an estimator.

1. Use the Cauchy Schwarz inequality to prove the information inequality

$$
\operatorname{Var}(T) \geq \frac{[\dot{g}(\theta)]^{2}}{I(\theta)}
$$

when $p=1$, that is, when the parameter space is a subset of the real line, and where $g(\theta)=E_{\theta}[T]$ and \dot{g} is its derivative with respect to θ, and $I(\theta)=\operatorname{Var}_{\theta}(U(\theta, \boldsymbol{X})$ where

$$
U(\theta, \boldsymbol{x})=\frac{\partial}{\partial \theta} \log p(x, \theta)
$$

2. Consider now the Information Inequality when $\theta \in \mathbb{R}^{d}$ and $T \in \mathbb{R}^{1 \times r}$ is an estimate of r functions of θ. Under regularity on the density, we obtain

$$
\operatorname{Var}_{\theta}\left(T(\boldsymbol{X})^{\top}\right) \geq \dot{g}(\theta)^{\top} \mathbf{I}(\theta)^{-1} \dot{g}(\theta)
$$

where each column of \dot{g} is the gradient with respect to θ of the row entry of g, and where the information matrix is now the 'variance-covariance' matrix of the score function.
Let \boldsymbol{X} be a multivariate normal observation with unknown mean μ and known invertible covariance matrix Σ, that is, with density

$$
p(x, \mu)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right)
$$

Compute the information lower bound for the unbiased estimation of

$$
g(\mu)=\frac{1}{2} \sum_{i=1} \mu_{i}^{2}
$$

