Algebra qualifying exam, January 2024

Justify all arguments completely. Every ring R is assumed to have a unit $1 \in R$. Reference specific results whenever possible.

1. Let G be a simple group of order 168. Show that G is isomorphic to a subgroup of A_{8}, the alternating group of degree 8. Show that G is not isomorphic to a subgroup of A_{6}.
2. Let K be a field and A be a finite-dimensional, semisimple K-algebra. Let $Z(A)$ denote the center of A. Prove that two finitely-generated A-modules M and M^{\prime} are isomorphic as A-modules if and only if they are isomorphic as $Z(A)$-modules.
3. Let f and g be polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{24}\right]$. Suppose that for each value $z \in \mathbb{C}^{24}$ at which $f(z)=0$, we also have $g(z)=0$. Prove that f divides some power of g.
4. Define the Jacobson radical of a ring to be the intersection of all maximal left ideals of this ring. Let $\phi: R \rightarrow S$ be a surjective morphism of rings. Prove that the image by ϕ of the Jacobson radical of R is contained in the Jacobson radical of S.
5. Construct an example (or merely prove the existence) of a 10×10 matrix over \mathbb{R} with minimal polynomial $(x+1)^{2}\left(x^{4}+1\right)$ which is not similar to a matrix over \mathbb{Q}.
6. Let F be a field of characteristic not 2. Show that if $f(x)=x^{8}+a x^{4}+b x^{2}+c$ is an irreducible polynomial over F for some $a, b, c \in F$, then the Galois group of the splitting field of f is solvable.
