Numerical Analysis Preliminary Examination Spring 2024

December 14, 2023

Problem 1. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

(a) Show that all the diagonal entries in A are positive and that the entry in A with largest absolute value lies on the diagonal of A.

Suppose we perform Gaussian elimination on the matrix A. Let $A^{(0)} = A$ and let $A^{(k)}$ be the $(n-k) \times (n-k)$ matrix in the lower right corner after k rounds.

(b) Show that each $A^{(k)}$ is symmetric positive definite. Hint: Write $A = A^{(0)}$ as

$$A = \begin{bmatrix} \alpha & v^T \\ v & B \end{bmatrix}$$

and show that

$$A^{(1)} = B - \frac{vv^T}{\alpha}$$

and that for every $x = [x_2, x_3, \ldots, x_n]^T \in \mathbb{R}^{n-1}$, if $y = [y_1, x_2, \ldots, x_n]^T$ and y_1 is suitably chosen, then $x^T A^{(1)} x = y^T A y$.

- (c) What is the significance of (b) to the execution of Gaussian elimination on the matrix A?
- (d) Consider the norm on $n \times n$ matrices defined by $||C|| = \max_{i,j} |C_{ij}|$ and let U be the upper triangular matrix we obtain from doing Gaussian elimination on A. Show

$$||A^{(k)}|| \le ||A||$$

for $k = 1, 2, \dots, n-1$ and that $||U|| \le ||A||$.

(e) What is the significance of (d) to the execution of Gaussian elimination on the matrix A?

Problem 2. The following questions are related to eigenvalues and eigenvectors of a nondefective $n \times n$ matrix A.

(a) Let $A = (a_{ij})$ be such a matrix and let $r_i = \sum_{j \neq i} |a_{ij}|, i = 1, ..., n$. Show that for each eigenvalue λ of A at least one of the following inequalities hold:

$$|\lambda - a_{ij}| \le r_i \qquad i = 1, \dots, n$$

(b) Apply the results in part a) to the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

- (c) Let λ be an eigenvalue of A. Show that for any induced norm of A we have: $|\lambda| \leq ||A||$.
- (d) Let $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. That is λ_1 is the dominant eigenvalue of A. Show that for appropriate starting vectors x_0 , the iteration $x_k = A^k x_0$ can be used to approximate λ_1 and its corresponding eigenvector. Furthermore, show that the rate of convergence is determined by the ratio $|\frac{\lambda_2}{\lambda_1}|$.
- (e) Apply the method in part (d) to the matrix A in part (b). Do only two iterations.

Problem 3. Consider the stationary vector-matrix iteration given by

$$x_{k+1} = Mx_k + c \tag{1}$$

where $M \in \mathbb{C}^{n \times n}$, $c \in \mathbb{C}^n$, and $x_0 \in \mathbb{C}^n$ are given.

- (a) If $x^* \in \mathbb{C}^n$ is a fixed point of (1) and ||M|| < 1 where $||\cdot||$ is any compatible matrix norm induced by a vector norm, show that x^* is unique and that $\lim_{k\to\infty} x_k = x^*$ for any $x_0 \in \mathbb{C}^n$.
- (b) Let $\rho(M)$ denote the spectral radius of the matrix M and use the fact that $\rho(M) = \inf ||M||$, where the infimum is taken over all compatible matrix norms induced by vector norms, to show that $\lim_{k\to\infty} x_k = x^*$ for any $x_0 \in \mathbb{C}^n$ if and only if $\rho(M) < 1$.
- (c) Now consider the linear system

$$Ax = b \tag{2}$$

where $A \in \mathbb{C}^{n \times n}$ is nonsingular and $b \in \mathbb{C}^n$ are given. What are the matrix $M \in \mathbb{C}^{n \times n}$ and the vector $c \in \mathbb{C}^n$ in (1) in the case of the Jacobi iteration for solving the linear system given in (2)?

- (d) Use Part (a) to show that if the matrix $A \in \mathbb{C}^{n \times n}$ is row diagonally dominant then the Jacobi iteration will converge to the solution of the linear system given in (2).
- (e) Use Part (b) together with the Gershgorin Circle Theorem to show that if the matrix $A \in \mathbb{C}^{n \times n}$ is row diagonally dominant then the Jacobi iteration will converge to the solution of the linear system given in (2).