1. Let X_{1}, \ldots, X_{n} be i.i.d. from a normal distribution with unknown mean μ and variance 1. Suppose that negative values of X_{i} are truncated at 0 , so that instead of X_{i}, we actually observe

$$
Y_{i}=\max \left(0, X_{i}\right), \quad i=1,2, \ldots, n
$$

from which we would like to estimate μ. By reordering, assume that $Y_{1}, \ldots, Y_{m}>0$ and $Y_{m+1}=$ $\ldots=Y_{n}=0$.
(a) Explain how to use the EM algorithm to estimate μ from Y_{1}, \ldots, Y_{n}. Specifically, give the details about E-step and M-step. Show that a recursive formula for the successive EM estimates $\mu^{(k+1)}$ is

$$
\mu^{(k+1)}=\frac{1}{n} \sum_{i=1}^{m} Y_{i}+\frac{n-m}{m} \mu^{(k)}-\frac{n-m}{m} \frac{\phi\left(\mu^{(k)}\right)}{\Phi\left(-\mu^{(k)}\right)},
$$

where $\phi(x)$ is probability density function and $\Phi(x)$ is cumulative density function of the standard normal distribution.
(b) Find the log-likelihood function $\log L(\mu)$ based only on observed data, and use it to write down a (nonlinear) equation which the MLE $\widehat{\mu}$ satisfies.
(c) Use the equation in part (b) to verify that $\widehat{\mu}$ is indeed a fixed point of the recursion found in (a).
(d) Prove that $\mu^{(k)} \longrightarrow \widehat{\mu}$ for any starting point $\mu^{(0)}$, providing at least one of the observations is not truncated. To do this, prove that the difference between $\mu^{(k)}$ and $\widehat{\mu}$ gets smaller as k gets larger. Hint: The Mean Value Theorem and the following inequalities, which you can use without proof, might be useful.

$$
0<\frac{\phi(x)[\phi(x)-x \Phi(-x)]}{\Phi^{2}(-x)}<1, \quad \text { for all } x
$$

Note: The Mean Value Theorem says that if f is continuous and differentiable on the interval (a, b), then there is a number c in (a, b) such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
2. Let X_{1}, \ldots, X_{n} be iid $\operatorname{Unif}(0, \theta)$, where $\theta>0$ is unknown.
(a) Find the MLE $\widehat{\theta}$, its c.d.f. $F_{\theta}(u)=P_{\theta}(\widehat{\theta} \leq u)$, and its expected value $E_{\theta}(\widehat{\theta})$.
(b) Consider a confidence interval for θ of the form

$$
\begin{equation*}
[a \widehat{\theta}, b \widehat{\theta}], \quad \text { where } 1 \leq a \leq b \text { are constants } \tag{1}
\end{equation*}
$$

For given $0<\alpha<1$, characterize all $1 \leq a \leq b$ making $[a \widehat{\theta}, b \widehat{\theta}]$ a $(1-\alpha)$ confidence interval.
(c) Find values $1 \leq a \leq b$ minimizing the expected length $E_{\theta}(b \widehat{\theta}-a \widehat{\theta})$ among all $(1-\alpha)$ confidence intervals of the form (1), uniformly in θ.

