1. Let X_1, \ldots, X_n be i.i.d. from a normal distribution with unknown mean μ and variance 1. Suppose that negative values of X_i are truncated at 0, so that instead of X_i , we actually observe

$$Y_i = \max(0, X_i), \quad i = 1, 2, \dots, n,$$

from which we would like to estimate μ . By reordering, assume that $Y_1, \ldots, Y_m > 0$ and $Y_{m+1} = \ldots = Y_n = 0$.

(a) Explain how to use the EM algorithm to estimate μ from Y_1, \ldots, Y_n . Specifically, give the details about E-step and M-step. Show that a recursive formula for the successive EM estimates $\mu^{(k+1)}$ is

$$\mu^{(k+1)} = \frac{1}{n} \sum_{i=1}^{m} Y_i + \frac{n-m}{m} \mu^{(k)} - \frac{n-m}{m} \frac{\phi(\mu^{(k)})}{\Phi(-\mu^{(k)})},$$

where $\phi(x)$ is probability density function and $\Phi(x)$ is cumulative density function of the standard normal distribution.

- (b) Find the log-likelihood function $\log L(\mu)$ based only on observed data, and use it to write down a (nonlinear) equation which the MLE $\hat{\mu}$ satisfies.
- (c) Use the equation in part (b) to verify that $\hat{\mu}$ is indeed a fixed point of the recursion found in (a).
- (d) Prove that $\mu^{(k)} \longrightarrow \hat{\mu}$ for any starting point $\mu^{(0)}$, providing at least one of the observations is not truncated. To do this, prove that the difference between $\mu^{(k)}$ and $\hat{\mu}$ gets smaller as kgets larger. *Hint:* The Mean Value Theorem and the following inequalities, which you can use without proof, might be useful.

$$0 < \frac{\phi(x)[\phi(x) - x\Phi(-x)]}{\Phi^2(-x)} < 1,$$
 for all x .

Note: The Mean Value Theorem says that if f is continuous and differentiable on the interval (a, b), then there is a number c in (a, b) such that f(b) - f(a) = f'(c)(b - a).

- 2. Let X_1, \ldots, X_n be iid Unif $(0, \theta)$, where $\theta > 0$ is unknown.
 - (a) Find the MLE $\hat{\theta}$, its c.d.f. $F_{\theta}(u) = P_{\theta}(\hat{\theta} \leq u)$, and its expected value $E_{\theta}(\hat{\theta})$.
 - (b) Consider a confidence interval for θ of the form

~ ~

$$[a\theta, b\theta], \quad \text{where } 1 \le a \le b \text{ are constants.}$$
(1)

For given $0 < \alpha < 1$, characterize all $1 \le a \le b$ making $[a\hat{\theta}, b\hat{\theta}]$ a $(1 - \alpha)$ confidence interval.

(c) Find values $1 \le a \le b$ minimizing the expected length $E_{\theta}(b\hat{\theta} - a\hat{\theta})$ among all $(1-\alpha)$ confidence intervals of the form (1), uniformly in θ .