1. Let $f(x;\theta), \theta \in \Theta \subset \mathbb{R}^d$ be a family of density functions, and consider the sequence of moments

$$m_{\theta,k} = E_{\theta}[X^k]$$
 for $k = 1, 2, \dots$

when these exist, and where E_{θ} indicates expectation with respect to $f(x; \theta)$. Let X_1, \ldots, X_n be an i.i.d. sample from $f(x; \theta)$ and

$$\widehat{m_k} = \frac{1}{n} \sum_{i=1}^n X_i^k,$$

the sample k^{th} moment. It is desired to estimate some function ψ of θ , which may equal θ itself. We say $\hat{\psi}$ is a moment estimator of ψ of order k when $m_{\theta,1}, \ldots, m_{\theta,k}$ exist and for some function g,

$$\widehat{\psi} = g(\widehat{m_1}, \dots, \widehat{m_k}) \quad \text{when} \quad \psi = g(m_{\theta,1}, \dots, m_{\theta,k}).$$
 (1)

- a. Find a moment estimator of order 2 for the variance of the distribution $f(x; \theta)$, assuming it exists.
- b. Let $f_1(x), \ldots, f_d(x)$ be known density functions and

$$f(x;\theta) = \sum_{i=1}^{d} \theta_i f_i(x)$$

where $\theta \in \Theta$ with

$$\Theta = \left\{ \theta \in \mathbb{R}^d; \sum_{i=1}^d \theta_i = 1, \theta_i \ge 0 \right\}.$$

Find a moment estimator for θ , and write what moment assumptions are needed. It is not necessary to write the function g in (1) explicitly, but explain how to calculate the moment estimator for θ .

- c. Prove that if $\hat{\psi}$ is a moment estimator of ψ of order k of the form (1) where g is continuous then $\hat{\psi}$ is consistent for ψ .
- d. Assuming sufficient smoothness on the function g, identify the asymptotic distribution of $\hat{\psi}$, after properly centering and scaling to assure the limit is non trivial. (No need to prove the distributional convergence.)
- 2. (a) Let a_1, \ldots, a_n be distinct real numbers and let X have the discrete uniform distribution on the set $\{a_1, \ldots, a_n\}$, i.e.,

$$P(X = a_i) = 1/n$$
 for all $i = 1, \dots, n$.

Find

i. E(X)

- ii. $\operatorname{Var}(X)$
- iii. a median $\operatorname{med}(X)$ of X, i.e., a number minimizing $E|X-\operatorname{med}(X)|$, which is not necessarily unique.
- (b) A scientist has a data set x_1, \ldots, x_{10} of distinct real numbers such that $\sum_{i=1}^{10} (x_i \overline{x})^2 = 110$, where $\overline{x} = (x_1 + \ldots + x_{10})/10$ is the sample mean.
 - i. The scientist claims that one of the data points exceeds the sample mean by 11 or more. Could this be true? Why or why not?
 - ii. You further learn that all the data points are positive and $\overline{x} = 1.4$. The scientist claims that two of the data points exceed the sample mean by 7 or more. Could this be true? Why or why not?
 - iii. Finally the scientist claims that 5 is a sample median m of the data set. Could this be true? Why or why not? *Hint:* Use Jensen's inequality to bound $|\overline{x} m|$.