ODE EXAM - Spring 2023

The exam has four problems on two pages. Each problem is worth 10 points. Do all four problems.

Your work should be neat and well organized. Neatness will not be officially taken into account in the scoring, but a greater degree of clarity will allow the committee to more confidently evaluate your work.

1. Let $a:[0, \infty) \rightarrow[0, \infty)$ and $u:[0, \infty) \rightarrow[0, \infty)$ be two nonnegative continuous functions. Assume that

$$
u(x) \leq \int_{0}^{x} a(y) u(y) d y
$$

for all $x \geq 0$. Show, without citing Gronwal's inequality, that $u(x)=0$ for $x \geq 0$. To clarify, you cannot simply claim that the result follows from Gronwal's inequality; instead, you either establish Gronwal's inequality in this setting or use some other argument.
2. Consider the $2^{\text {nd }}$ order ODE for the unknown function $x=x(t)$,

$$
x^{\prime \prime}+p(t) x^{\prime}+a x=0,
$$

where $p(t)=2-3 \cos (t)$ and a is a real number. Suppose $\phi(t)$ and $\psi(t)$ form a fundamental set of solutions, i.e. the matrix

$$
X(t)=\left(\begin{array}{cc}
\phi(t) & \psi(t) \\
\phi^{\prime}(t) & \psi^{\prime}(t)
\end{array}\right)
$$

is non-singular. Prove that

$$
\lim _{t \rightarrow+\infty} \operatorname{det} X(t)=0,
$$

that is, the determinant of the matrix $X(t)$ converges to zero as $t \rightarrow+\infty$.
3. Consider the system for the unknown functions $x(t)$ and $y(t)$:

$$
\left\{\begin{array}{l}
x^{\prime}=-y-y^{2} x^{3} \tag{1}\\
y^{\prime}=x-x^{2} y .
\end{array}\right.
$$

(i) Identify the stationary points of the system.
(ii) Prove that the system (1) has a unique solution $(x(t), y(t))$ satisfying $x(0)=1, y(0)=$ 0 , and the solution is defined for all $t \geq 0$.
(iii) Prove that the solution from part (ii) satisfies

$$
\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} y(t)=0 .
$$

4. Consider the two-dimensional ODE

$$
\begin{equation*}
x^{\prime}=\boldsymbol{f}(\boldsymbol{x}), \tag{2}
\end{equation*}
$$

where the vector field \boldsymbol{f} is continuously differentiable everywhere in \mathbb{R}^{2}. Suppose Γ is a periodic orbit for (2).
(i) What can we conclude about the index of Γ with respect to \boldsymbol{f} ? Give a short explanation.
(ii) What can we conclude about the number and type of stationary points of \boldsymbol{f} inside the region enclosed by Γ ? Provide as many details as you can.
(iii) Which of the following statements about the stationary points of \boldsymbol{f} inside the region enclosed by Γ are definitely NOT true? Explain your conclusions.

1. \boldsymbol{f} has exactly one stationary point inside the region enclosed by Γ, and the point is a saddle.
2. \boldsymbol{f} has exactly two stationary points inside the region enclosed by Γ : a saddle and a center.
3. \boldsymbol{f} has exactly three stationary points inside the region enclosed by Γ : a saddle, a center, and a stable node.
