1. Let $X_1, ..., X_n$ be an i.i.d. sample from the exponential distribution $\mathsf{Exp}(\lambda)$ with probability density function

$$f(x;\lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

parametrized with $\lambda > 0$ (or the "rate parameter") which we are tasked to estimate. Let n > 1.

- (a) Show that the maximum likelihood estimator of λ is $\hat{\lambda}_n = \frac{n}{\sum_{i=1}^n X_i}$.
- (b) Show that $\hat{\lambda}_n$ is biased. On average, does it overestimate or underestimate λ ? You can assume that $\mathbb{E}\hat{\lambda}_n$ is finite.

(hint: the function $f(x) = \frac{1}{x}$ has some properties that could be useful in this question)

(c) Show that (for example, using δ -method)

$$\sqrt{n}(\widehat{\lambda}_n - \lambda) \stackrel{n \to \infty}{\longrightarrow} N(0, \sigma_{\infty}^2)$$

for some $\sigma_{\infty}^2 > 0$, where $\xrightarrow{n \to \infty}$ denotes convergence in distribution. Find σ_{∞}^2 .

- 2. Answer the following questions (a correct answer with incorrect justification is worth 0 points):
 - (a) Let X_1, \ldots, X_n be i.i.d. random variables generated according to some distribution from the family $P_{\theta}, \ \theta \in \Theta \subseteq \mathbb{R}$, where the value of the parameter θ is unknown. Give a definition of a sufficient statistic. Does a sufficient statistic always exist?
 - (b) Prove or disprove: a Uniform Minimal Variance Unbiased estimator always exists. (hint: consider a sample of size 1 from the Bernoulli distribution with parameter $p \in [0, 1]$)
 - (c) Prove or disprove: a maximum likelihood estimator is always unbiased.