Geometry and Topology Graduate Exam Spring 2023

Solve as many problems as you can. Partial credit will be given to partial solutions.

Problem 1. Let X be a Hausdorff topological space, and let $\pi : \widetilde{X} \to X$ be its universal cover, i.e. \widetilde{X} is path connected and simply connected and π is a covering map. Prove that if \widetilde{X} is compact then the fundamental group of X is finite.

Problem 2. Let A be an $n \times n$ matrix which is symmetric and nonsingular, and let c be a nonzero real number. Prove that

$$\{x \in \mathbb{R}^n \mid \langle Ax, x \rangle = c\}$$

is a smooth submanifold of \mathbb{R}^n , and state its dimension. Here $\langle -, - \rangle$ denotes the standard inner product on \mathbb{R}^n .

Problem 3. Let $\omega \in \Omega^2(M)$ be an exact 2-form on a manifold M. Prove that for any map $f: S \to M$ from a closed orientable surface (i.e., closed orientable 2-dimensional manifold) S, there must be some $p \in S$ such that $(f^*\omega)_p = 0$.

Problem 4. Let $\mathbb{T}^2 = S^1 \times S^1$ denote the standard 2-torus and S² the standard 2-sphere. Let X be the space obtained by identifying two distinct points a_1, a_2 from \mathbb{T}^2 to some point $p \in S^2$. Compute (1) the (integral) homology groups of X in every degree, and (2) the fundamental group of X.

Problem 5. Let n > 1, let $\mathbb{T}^n = (S^1)^n$ denote the *n*-torus, and let S^n denote the standard unit sphere in \mathbb{R}^{n+1} .

- (a) Let $f: \mathbb{T}^n \to S^n$ be a smooth map satisfying the following properties:
 - there exists 5 mutually disjoint open subsets U_1, \ldots, U_5 of \mathbb{T}^n such that for each $i \ f|_{U_i}$ is a diffeomorphism from U_i onto the open southern hemisphere $S^n \cap \{x_{n+1} < 0\}$;
 - The image of the complement of these subsets lies in the northern hemisphere; that is $f(\mathbb{T}^n \bigcup_i U_i) \subset S^n \cap \{x_{n+1} \ge 0\}$.

(You may take for granted such an f exists). Show that the induced map on *n*th de Rham cohomology $f^*: H^n_{dR}(\mathbb{S}^n) \to H^n_{dR}(\mathbb{T}^n)$ must be non-zero.

(b) Show that there does *not* exist a continuous map $f: S^n \to \mathbb{T}^n$ from the *n*-sphere to the *n*-torus $\mathbb{T}^n = (S^1)^n$ inducing a non-zero map $f_*: H_n(S^n) \to H_n(\mathbb{T}^n)$ of *n*-th homology groups.

Problem 6. Let X be a topological space. Suppose for some k that we can cover X by k open sets U_1, \ldots, U_k so that each U_i is contractible as is each higher intersection of s open sets $U_{i_1} \cap \cdots \cap U_{i_s}$ for every s. Prove that the reduced homology $\tilde{H}_i(X) = 0$ for all $i \geq k - 1$.

Problem 7. Let X denote the vector field on \mathbb{R}^3 given in standard coordinates by $X = x_1 \frac{\partial}{\partial x_1} - 2x_2 \frac{\partial}{\partial x_2} + 3x_3 \frac{\partial}{\partial x_3}$, and let $\phi_t : \mathbb{R}^3 \to \mathbb{R}^3$ denote the induced flow (you may take for granted that this exists for all time and is an oriented diffeomorphism).

If $R = [0, 1]^3$ denotes the unit cube, compute the rate of change of the (standard) volume of $\phi_t(R)$ at t = 0. That is, compute:

$$\frac{d}{dt} \left(\int_{\phi_t(R)} dx_1 dx_2 dx_3 \right)_{t=0}.$$

Hint: Re-express the above integral as an integral of a form which is varying in t, over a region that is not varying in t. You may also use the fact that $\frac{d}{dt} \int_A (\omega_t) = \int_A \frac{d}{dt} (\omega_t)$.