Algebra Exam January 14, 2023

Show your work. Be as clear as possible. Do all problems.

1. Let $R=\mathbb{C}[x, y, x] /\left(z^{2}-x y\right)$.
(a) Show that R is an integral domain.
(b) Show that R is integrally closed (hint: identify R as an integral extension of a polynomial ring).
2. Let G be a finite group and let p be the smallest prime divisor of $|G|$. Assume that a Sylow p-subgroup P of G is cyclic.
(a) Show that $N_{G}(P)=C_{G}(P)$ (hint: what is $\operatorname{Aut}(P)$?).
(b) Show that if G is solvable, then G contains a subgroup N of index p.
(c) Show that if N is a subgroup of index p (whether or not G is solvable), then N is normal in G.
3. Let F be a field extension of \mathbb{Q} with $[F: \mathbb{Q}]=60$ and F / \mathbb{Q} Galois. Prove that if F contains a 9 th root of 1 , then F / \mathbb{Q} is a solvable.
4. Let R be a finite ring with 1 . Show that some element of R is not the sum of nilpotent elements. Give an example to show that 1 can be a sum of nilpotent elements.
5. Let F be an algebraically closed field with $A \in M_{n}(F)$.
(a) Show that there exist polynomials $f(x), g(x) \in F[x]$ so that $A=$ $f(A)+g(A)$ with $f(A)$ diagonalizable and $g(A)$ nilpotent.
(b) Assuming (a), show that if $A=S+N$ with S diagonalizable, N nilpotent and $S N=N S$, then $S=f(A)$ and $N=g(A)$ (in otherwards, S and N are unique).
6. Let R be a ring with 1 . Let M be a noetherian (left) R-module.
(a) Show that if $f: M \rightarrow M$ is a surjective R-module homomorphism, then f is an isomorphism.
(b) Show that if $f: M \rightarrow M$ is an injective R-module homomorphism, it need not be an isomorphism.
